cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300707 Decimal expansion of Pi^4/96.

Original entry on oeis.org

1, 0, 1, 4, 6, 7, 8, 0, 3, 1, 6, 0, 4, 1, 9, 2, 0, 5, 4, 5, 4, 6, 2, 5, 3, 4, 6, 5, 5, 0, 7, 3, 4, 4, 9, 0, 8, 8, 5, 1, 3, 2, 9, 0, 1, 7, 4, 2, 3, 8, 0, 6, 4, 7, 5, 9, 5, 2, 7, 9, 0, 2, 0, 1, 9, 7, 8, 8, 6, 3, 0, 7, 7, 6, 7, 5, 2, 8, 3, 2, 9, 3, 6, 4, 7, 1, 0, 2, 7, 8, 3, 6, 9, 5, 3, 4, 3, 6, 7, 2, 4, 0, 5
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^4), whose value is obtained from zeta(4) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s) = (1-2^(-s))*zeta(s).
For the partial sums of this series see A120269/A128493. - Wolfdieter Lang, Sep 02 2019

Examples

			1.0146780316041920545462534655073449088513290174238064...
		

Crossrefs

Programs

  • MATLAB
    format long; pi^4/96
  • Maple
    evalf((1/96)*Pi^4, 120)
  • Mathematica
    RealDigits[Pi^4/96, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^4/96
    

Formula

Equals A092425/96. - Omar E. Pol, Mar 11 2018
Equals (15/16)*zeta(4) = (15/16)*A013662. - Wolfdieter Lang, Sep 02 2019
Equals Sum_{k>=1} 1/(2*k-1)^4. - Sean A. Irvine, Mar 25 2025
Equals lambda(4), where lambda is the Dirichlet lambda function. - Michel Marcus, Aug 15 2025

A016758 a(n) = (2*n+1)^6.

Original entry on oeis.org

1, 729, 15625, 117649, 531441, 1771561, 4826809, 11390625, 24137569, 47045881, 85766121, 148035889, 244140625, 387420489, 594823321, 887503681, 1291467969, 1838265625, 2565726409, 3518743761, 4750104241, 6321363049, 8303765625, 10779215329, 13841287201, 17596287801
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A300709.

Programs

  • Magma
    [(2*n+1)^6: n in [0..30]]; // Vincenzo Librandi, Sep 07 2011
    
  • Mathematica
    (2*Range[0,20]+1)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1, 729,15625,117649,531441,1771561,4826809},20] (* Harvey P. Dale, Dec 26 2012 *)
  • PARI
    vector(30, n, n--; (2*n+1)^6) \\ G. C. Greubel, Sep 15 2018

Formula

a(0)=1, a(1)=729, a(2)=15625, a(3)=117649, a(4)=531441, a(5)=1771561, a(6)=4826809, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) + 21*a(n-5) -7*a(n-6) +a(n-7). - Harvey P. Dale, Dec 26 2012
G.f.: (1 +722*x +10543*x^2 +23548*x^3 +10543*x^4 +722*x^5 +x^6)/(1-x)^7 . - R. J. Mathar, Jul 07 2017
Sum_{n>=0} 1/a(n) = Pi^6/960 (A300709). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(Pi/2)*(cos(sqrt(3)*Pi/2) + cosh(Pi/2))/2.
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(sqrt(3)*Pi/2)/24. (End)

A300710 Decimal expansion of 17*Pi^8/161280.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
Offset: 1

Views

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

Examples

			1.0001551790252961193029872492957280415665429750613740...
		

Crossrefs

Programs

  • MATLAB
    format long; (17/161280)*pi^8
  • Maple
    evalf((17/161280)*Pi^8, 120);
  • Mathematica
    RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
  • PARI
    default(realprecision, 120); (17/161280)*Pi^8
    

Formula

Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,8).
Equals DirichletL(4,1,8).
Equals DirichletL(8,1,8).
Equals DirichletL(16,1,8). (End)
Equals 255*Zeta(8)/256. - Jason Bard, Aug 21 2025
Showing 1-3 of 3 results.