cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A000035 Period 2: repeat [0, 1]; a(n) = n mod 2; parity of n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Least significant bit of n, lsb(n).
Also decimal expansion of 1/99.
Also the binary expansion of 1/3. - Robert G. Wilson v, Sep 01 2015
a(n) = A134451(n) mod 2. - Reinhard Zumkeller, Oct 27 2007 [Corrected by Jianing Song, Nov 22 2019]
Characteristic function of odd numbers: a(A005408(n)) = 1, a(A005843(n)) = 0. - Reinhard Zumkeller, Sep 29 2008
A102370(n) modulo 2. - Philippe Deléham, Apr 04 2009
Base b expansion of 1/(b^2-1) for any b >= 2 is 0.0101... (A005563 has b^2-1). - Rick L. Shepherd, Sep 27 2009
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i] := 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,1). - Milan Janjic, Jan 24 2010
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character of the reduced residue system mod 2 or mod 4 or mod 8 or mod 16 ...
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 == A111003,
or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.05179979... = 7*A002117/8,
or L(4,chi) = Sum_{n>=1} a(n)/n^4 = 1.014678... = A092425/96. (End)
Also parity of the nonnegative integers A001477. - Omar E. Pol, Jan 17 2012
a(n) = (4/n), where (k/n) is the Kronecker symbol. See the Eric Weisstein link. - Wolfdieter Lang, May 28 2013
Also the inverse binomial transform of A131577. - Paul Curtz, Nov 16 2016 [an observation forwarded by Jean-François Alcover]
The emanation sequence for the globe category. That is take the globe category, take the corresponding polynomial comonad, consider its carrier polynomial as a generating function, and take the corresponding sequence. - David Spivak, Sep 25 2020
For n > 0, a(n) is the alternating sum of the product of n increasing and n decreasing odd factors. For example, a(4) = 1*7 - 3*5 + 5*3 - 7*1 and a(5) = 1*9 - 3*7 + 5*5 - 7*3 + 9*1. - Charlie Marion, Mar 24 2022

Examples

			G.f. = x + x^3 + x^5 + x^7 + x^9 + x^11 + x^13 + x^15 + ... - _Michael Somos_, Feb 20 2024
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Ones complement of A059841.
Cf. A053644 for most significant bit.
This is Guy Steele's sequence GS(1, 2) (see A135416).
Period k zigzag sequences: this sequence (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A154955 (Mobius transform), A131577 (binomial transform).
Cf. A111003 (Dgf at s=2), A233091 (Dgf at s=3), A300707 (Dgf at s=4).
Parity of A005811.

Programs

Formula

a(n) = (1 - (-1)^n)/2.
a(n) = n mod 2.
a(n) = 1 - a(n-1).
Multiplicative with a(p^e) = p mod 2. - David W. Wilson, Aug 01 2001
G.f.: x/(1-x^2). E.g.f.: sinh(x). - Paul Barry, Mar 11 2003
a(n) = (A000051(n) - A014551(n))/2. - Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2003
a(n) = ceiling((-2)^(-n-1)). - Reinhard Zumkeller, Apr 19 2005
Dirichlet g.f.: (1-1/2^s)*zeta(s). - R. J. Mathar, Mar 04 2011
a(n) = ceiling(n/2) - floor(n/2). - Arkadiusz Wesolowski, Sep 16 2012
a(n) = ceiling( cos(Pi*(n-1))/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = floor((n-1)/2) - floor((n-2)/2). - Mikael Aaltonen, Feb 26 2015
Dirichlet g.f.: L(chi(2),s) with chi(2) the principal Dirichlet character modulo 2. - Ralf Stephan, Mar 27 2015
a(n) = 0^^n = 0^(0^(0...)) (n times), where we take 0^0 to be 1. - Natan Arie Consigli, May 02 2015
Euler transform and inverse Moebius transform of length 2 sequence [0, 1]. - Michael Somos, Feb 20 2024

A087003 a(2n) = 0 and a(2n+1) = mu(2n+1); also the sum of Mobius function values computed for terms of 3x+1 trajectory started at n, provided that Collatz conjecture is true.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, 0, 1, 0, 1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1
Offset: 1

Views

Author

Labos Elemer, Oct 02 2003

Keywords

Comments

Observe that (these summatory) terms are from {-1,0,1}, so behave like Mobius function values, not like Mertens function values. Moreover, empirically: a(n) deviates from mu(initial-value) = mu(n) only if iv = n is an even squarefree number (i.e., it is from A039956). - This comment, like also the next one, concerns the original Collatz-related definition of this sequence. - Antti Karttunen, Sep 18 2017
From Marc LeBrun, Feb 19 2004: (Start)
Absolute values are the same as those of A091069. First consider the descending parts of Collatz (or 3x+1) trajectories, those that begin with even numbers 2^p k, with k odd. These go 2^p*k, 2^(p-1)*k, ... 2k, k. All but 2k and k are divisible by 4, a (rational) square, hence their mu values are all 0 and so they contribute nothing to the sum.
Then at the end, since mu(2k) = -mu(k), the last two steps cancel each other out. So every descending chain in a trajectory contributes 0. Of course the full trajectory of every even number consists entirely of descending chains, so A087003 is 0 for all even n.
On the other hand, the trajectory of every odd number consists of just that number followed by the trajectory of an even number (which contributes nothing) so A087003 is indeed equal to mu(n) for odd n.
(End)
The sequence is multiplicative; it may be defined as the Dirichlet inverse of the integers modulo 2 (A000035). - Gerard P. Michon, Apr 29 2007
a(n) appears in the second column of A156241 at every second row. - Mats Granvik, Feb 07 2009

Crossrefs

Cf. A000035 (the Dirichlet inverse), A318657/A318658 (the "Dirichlet Square Root").

Programs

  • Mathematica
    c[x_] := (1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1); c[1]=1; fpl[x_] := Delete[FixedPointList[c, x], -1] lf[x_] := Length[fpl[x]] Table[Apply[Plus, Table[MoebiusMu[Part[fpl[w], j]], {j, 1, lf[w]}]], {w, 1, 256}]
    Riffle[MoebiusMu[Range[1,121,2]],0] (* Harvey P. Dale, Jan 24 2025 *)
  • PARI
    A006370(n) = if(n%2, 3*n+1, n/2); \\ This function from Michael B. Porter, May 29 2010
    A087003(n) = { my(s=1); while(n>1, s += moebius(n); n = A006370(n)); (s); }; \\ Antti Karttunen, Sep 14 2017
    
  • PARI
    a(n)={sumdiv(n, d,  my(e=valuation(d, 2)); if(d==1<Andrew Howroyd, Aug 04 2018
    
  • PARI
    A087003(n) = ((n%2)*moebius(n)); \\ Antti Karttunen, Sep 01 2018

Formula

a(n) = A008683(n) + A292273(n). - Antti Karttunen, Sep 14 2017
Moebius transform of A209229. - Andrew Howroyd, Aug 04 2018
From Jianing Song, Aug 04 2018: (Start)
Multiplicative with a(2^e) = 0, a(p^e) = (-1 + (-1)^e)/2 for odd primes p.
Dirichlet g.f.: 1/((1 - 2^(-s))*zeta(s)).
(End)
From Antti Karttunen, Sep 01 2018: (Start)
a(n) = A000035(n)*A008683(n).
Dirichlet convolution of A318657/A046644 with itself.
(End)
Sum_{n>=1} a(n)/n^2 = A217739 . Sum_{n>=1} a(n)/n^3 = A233091. Sum_{n>=1} a(n)/n^4 = A300707. - R. J. Mathar, Dec 17 2024

Extensions

a(2n) = 0, a(2n+1) = mu(2n+1) added to the name as the new primary definition by Antti Karttunen, Sep 18 2017

A352049 Sum of the cubes of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 8, 27, 64, 125, 224, 343, 512, 756, 1008, 1331, 1792, 2197, 2752, 3527, 4096, 4913, 6056, 6859, 8064, 9631, 10656, 12167, 14336, 15750, 17584, 20439, 22016, 24389, 28224, 29791, 32768, 37295, 39312, 43343, 48448, 50653, 54880, 61543, 64512, 68921, 77056, 79507
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^3 * Sum_{d|10, d<10, d odd} 1 / d^3 = 10^3 * (1/1^3 + 1/5^3) = 1008.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), this sequence (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^3, d = select(`<`,numtheory:-divisors(m),n))
    end proc:
    map(f, [$1..50]); # Robert Israel, Apr 03 2023
  • Mathematica
    A352049[n_]:=DivisorSum[n,1/#^3&,#A352049,50] (* Paolo Xausa, Aug 09 2023 *)
    a[n_] := DivisorSigma[-3, n/2^IntegerExponent[n, 2]] * n^3 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^3 * sigma(n >> valuation(n, 2), -3) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^3 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^3 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A051000(n) * A006519(n)^3 - A000035(n).
Sum_{k=1..n} a(k) = c * n^4 / 4, where c = 15*zeta(4)/16 = 1.01467803... (A300707). (End)

A016756 a(n) = (2*n+1)^4.

Original entry on oeis.org

1, 81, 625, 2401, 6561, 14641, 28561, 50625, 83521, 130321, 194481, 279841, 390625, 531441, 707281, 923521, 1185921, 1500625, 1874161, 2313441, 2825761, 3418801, 4100625, 4879681, 5764801, 6765201, 7890481, 9150625, 10556001, 12117361, 13845841, 15752961, 17850625
Offset: 0

Keywords

Comments

a(n) is the number of ordered pairs of lattice points (vectors in R^2 with integer coordinates) that are in or on a square centered at the origin with side length 2*n. - Geoffrey Critzer, Apr 20 2013

Examples

			a(1) = 81 because there are 9 lattice points in or on the 2 x 2 square centered at the origin, so there are 9*9 =81 ordered pairs. - _Geoffrey Critzer_, Apr 20 2013
		

Crossrefs

Programs

Formula

From Wolfdieter Lang, Mar 12 2017: (Start)
G.f.: (1+76*x+230*x^2+76*x^3+x^4)/(1-x)^5; see row n=5 of A060187.
E.g.f.: (1 + 80*x + 232*x^2 + 128*x^3 + 16*x^4)*exp(x); see row n=4 of A154537. (End)
Sum_{n>=0} 1/a(n) = Pi^4/96 (A300707). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = (cos(Pi/sqrt(2)) + cosh(Pi/sqrt(2)))/2.
Product_{n>=1} (1 - 1/a(n)) = Pi*cosh(Pi/2)/8. (End)

A300710 Decimal expansion of 17*Pi^8/161280.

Original entry on oeis.org

1, 0, 0, 0, 1, 5, 5, 1, 7, 9, 0, 2, 5, 2, 9, 6, 1, 1, 9, 3, 0, 2, 9, 8, 7, 2, 4, 9, 2, 9, 5, 7, 2, 8, 0, 4, 1, 5, 6, 6, 5, 4, 2, 9, 7, 5, 0, 6, 1, 3, 7, 4, 0, 4, 3, 6, 8, 7, 1, 9, 9, 6, 1, 5, 9, 2, 3, 4, 7, 1, 3, 0, 0, 4, 1, 6, 2, 5, 3, 7, 0, 1, 8, 3, 9, 0, 5, 5, 6, 3, 9, 6, 2, 8, 7, 2, 9, 8, 9, 3, 1, 1, 2
Offset: 1

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^8), whose value is obtained from zeta(8) given by L. Euler in 1735: Sum_{n>=0} (2n+1)^(-s)=(1-2^(-s))*zeta(s).

Examples

			1.0001551790252961193029872492957280415665429750613740...
		

Crossrefs

Programs

  • MATLAB
    format long; (17/161280)*pi^8
  • Maple
    evalf((17/161280)*Pi^8, 120);
  • Mathematica
    RealDigits[(17/161280)*Pi^8, 10, 120][[1]]
  • PARI
    default(realprecision, 120); (17/161280)*Pi^8
    

Formula

Equals 17*A092736/161280. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,8).
Equals DirichletL(4,1,8).
Equals DirichletL(8,1,8).
Equals DirichletL(16,1,8). (End)
Equals 255*Zeta(8)/256. - Jason Bard, Aug 21 2025

A300709 Decimal expansion of Pi^6/960.

Original entry on oeis.org

1, 0, 0, 1, 4, 4, 7, 0, 7, 6, 6, 4, 0, 9, 4, 2, 1, 2, 1, 9, 0, 6, 4, 7, 8, 5, 8, 7, 1, 3, 7, 9, 3, 7, 3, 9, 4, 6, 5, 3, 3, 5, 1, 5, 9, 1, 7, 5, 1, 0, 9, 0, 2, 2, 4, 9, 3, 8, 6, 2, 1, 0, 2, 8, 6, 2, 9, 2, 6, 4, 4, 9, 2, 5, 4, 4, 1, 1, 4, 8, 0, 5, 7, 2, 8, 3, 5, 5, 6, 3, 4, 5, 3, 3, 2, 4, 5, 5, 5, 8, 4, 9, 0
Offset: 1

Author

Keywords

Comments

Also the sum of the series Sum_{n>=0} (1/(2n+1)^6), whose value is obtained from zeta(6) given by L. Euler in 1735: Sum_{n>=0}(2n+1)^(-s) = (1-2^(-s))*zeta(s).

Examples

			1.0014470766409421219064785871379373946533515917510902...
		

Crossrefs

Programs

  • MATLAB
    format long; pi^6/960
  • Maple
    evalf((1/960)*Pi^6, 120)
  • Mathematica
    RealDigits[Pi^6/960, 10, 120][[1]]
  • PARI
    default(realprecision, 120); Pi^6/960
    

Formula

Equals A092732/960. - Omar E. Pol, Mar 11 2018
From Artur Jasinski, Jun 24 2025: (Start)
Equals DirichletL(2,1,6).
Equals DirichletL(4,1,6).
Equals DirichletL(8,1,6).
Equals DirichletL(16,1,6). (End)

A300731 Decimal expansion of sqrt(Pi^4/96 - 1).

Original entry on oeis.org

1, 2, 1, 1, 5, 2, 9, 2, 6, 5, 1, 9, 3, 0, 4, 7, 4, 3, 3, 1, 4, 9, 7, 3, 8, 7, 4, 7, 4, 5, 3, 5, 2, 8, 5, 0, 9, 8, 8, 5, 9, 7, 5, 4, 4, 0, 5, 6, 8, 5, 3, 2, 4, 6, 6, 0, 6, 0, 3, 7, 5, 1, 2, 0, 8, 6, 8, 2, 8, 3, 0, 8, 1, 1, 3, 7, 6, 5, 3, 2, 6, 4, 3, 4, 7, 3, 8, 3, 8, 0, 6, 1, 5, 8, 5, 5, 0, 7, 9, 1, 5, 8, 2
Offset: 0

Author

Keywords

Comments

Also the total harmonic distortion (THD) of a triangle wave, see formula (14) in the Blagouchine & Moreau link.

Examples

			0.1211529265193047433149738747453528509885975440568532...
		

Programs

  • MATLAB
    format long; sqrt(pi^4/96-1)
  • Maple
    evalf(sqrt((1/96)*Pi^4-1), 120)
  • Mathematica
    RealDigits[Sqrt[Pi^4/96 - 1], 10, 120][[1]]
  • PARI
    default(realprecision, 120); sqrt(Pi^4/96-1)
    

A145378 a(n) = Sum_{d|n} sigma(d) - 2*Sum_{2c|n} sigma(c) + 4*Sum_{4b|n} sigma(b).

Original entry on oeis.org

1, 2, 5, 7, 7, 10, 9, 20, 18, 14, 13, 35, 15, 18, 35, 49, 19, 36, 21, 49, 45, 26, 25, 100, 38, 30, 58, 63, 31, 70, 33, 110, 65, 38, 63, 126, 39, 42, 75, 140, 43, 90, 45, 91, 126, 50, 49, 245, 66, 76, 95, 105, 55, 116, 91, 180, 105, 62, 61, 245, 63, 66, 162, 235, 105, 130, 69
Offset: 1

Author

N. J. A. Sloane, Mar 12 2009

Keywords

Comments

Dirichlet convolution of [1,-2,0,4,0,0,0,...] with A007429.

Crossrefs

Programs

  • Maple
    with(numtheory); g:=proc(n) local d,c,b,t0,t1,t2,t3;
    t1:=divisors(n);
    t0:=add( sigma(d), d in t1);
    t2:=0; for d in t1 do if d mod 2 = 0 then t2:=t2+sigma(d/2); fi; od:
    t3:=0; for d in t1 do if d mod 4 = 0 then t3:=t3+sigma(d/4); fi; od:
    t0-2*t2+4*t3; end;
    [seq(g(n),n=1..100)];
    # alternative
    read("transforms") : nmax := 100 :
    L27 := [seq(i,i=1..nmax) ];
    L := [1,-2,0,4,seq(0,i=1..nmax)] ;
    DIRICHLET(L27,L) :
    MOBIUSi(%) :
    MOBIUSi(%) ; # R. J. Mathar, Sep 25 2017
  • Mathematica
    a[n_] := Sum[DivisorSigma[1, d] - 2 Boole[Mod[d, 2] == 0] DivisorSigma[1, d/2] + 4 Boole[Mod[d, 4] == 0] DivisorSigma[1, d/4], {d, Divisors[n]}];
    Array[a, 100] (* Jean-François Alcover, Apr 04 2020 *)
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 2^(e + 2) - 3*(e + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 2^(f[i,2]+2) - 3*(f[i,2]+1),  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1-2/2^s+4/4^s)*(zeta(s))^2*zeta(s-1).
From Amiram Eldar, Oct 25 2022: (Start)
Multiplicative with a(2^e) = 2^(e+2) - 3*(e+1) and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/96 = 1.01467803... (A300707). (End)

A327096 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 - x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 5, 7, 7, 15, 9, 15, 18, 21, 13, 35, 15, 27, 35, 31, 19, 54, 21, 49, 45, 39, 25, 75, 38, 45, 58, 63, 31, 105, 33, 63, 65, 57, 63, 126, 39, 63, 75, 105, 43, 135, 45, 91, 126, 75, 49, 155, 66, 114, 95, 105, 55, 174, 91, 135, 105, 93, 61, 245, 63, 99
Offset: 1

Author

Ilya Gutkovskiy, Sep 13 2019

Keywords

Comments

Inverse Moebius transform of A002131.
Dirichlet convolution of A000027 with A001227.

Programs

  • Mathematica
    nmax = 62; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 - x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[Total[Select[Divisors[d], OddQ[d/#] &]], {d, Divisors[n]}]; Table[a[n], {n, 1, 62}]
  • PARI
    a(n)={sumdiv(n, d, if(n/d%2, sigma(d)))} \\ Andrew Howroyd, Sep 13 2019

Formula

G.f.: Sum_{k>=1} A002131(k) * x^k / (1 - x^k).
G.f.: Sum_{k>=1} A001227(k) * x^k / (1 - x^k)^2.
a(n) = Sum_{d|n} A002131(d).
a(n) = Sum_{d|n} d * A001227(n/d).
a(n) = (A007429(n) + A288417(n)) / 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/96 = 1.01467803... (A300707). - Amiram Eldar, Oct 23 2022

A348763 Decimal expansion of Sum_{n>=1} ((-1)^(n+1)*n)/(n+1)^2.

Original entry on oeis.org

1, 2, 9, 3, 1, 9, 8, 5, 2, 8, 6, 4, 1, 6, 7, 9, 0, 8, 8, 1, 8, 9, 7, 5, 4, 6, 1, 8, 6, 4, 8, 3, 6, 0, 2, 6, 5, 3, 3, 9, 7, 4, 8, 1, 6, 2, 4, 3, 1, 4, 3, 9, 6, 4, 7, 4, 7, 0, 9, 9, 1, 0, 5, 1, 9, 1, 6, 1, 0, 1, 1, 3, 2, 3, 1, 9, 0, 5, 7, 2, 1, 3, 1, 0, 9
Offset: 0

Author

Dumitru Damian, Oct 31 2021

Keywords

Examples

			0.12931985286416790881897546186483602653397481624314396474709910519161011...
		

Programs

  • Mathematica
    RealDigits[Pi^2/12 - Log[2], 10, 100][[1]] (* Amiram Eldar, Nov 30 2021 *)
  • PARI
    -sumalt(n=1, (-1)^n*n/(n+1)^2) \\ Charles R Greathouse IV, Nov 01 2021
    
  • PARI
    Pi^2/12-log(2) \\ Charles R Greathouse IV, Nov 01 2021
    
  • Python
    from scipy.special import zeta
    from math import log
    int(''.join(n for n in list(str(zeta(2)/2-log(2)))[2:-2]))
    
  • Python
    int(str(sum((-1)**(n+1)*n/(n+1)**2 for n in range(1,5000000)))[2:-2])
  • SageMath
    (pi^2/12-log(2)).n(digits=100)
    

Formula

Equals Pi^2/12-log(2).
Equals Sum_{k>=2} (zeta(k)-zeta(k+1))/2^k. - Amiram Eldar, Mar 20 2022
Equals Integral_{x >= 0} x/(1 + exp(x))^2 dx = (1/2) * Integral_{x >= 0} x*(x - 2)*exp(x)/(1 + exp(x))^2 dx . - Peter Bala, Apr 26 2025
Showing 1-10 of 11 results. Next