cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A016950 a(n) = (6*n + 3)^6.

Original entry on oeis.org

729, 531441, 11390625, 85766121, 387420489, 1291467969, 3518743761, 8303765625, 17596287801, 34296447249, 62523502209, 107918163081, 177978515625, 282429536481, 433626201009, 646990183449, 941480149401, 1340095640625, 1870414552161, 2565164201769, 3462825991689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016945(n)^6 = A016946(n)^3 = A016947(n)^2.
a(n) = 3^6*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/699840. (End)

A259322 Sum of sixth powers of odd numbers.

Original entry on oeis.org

1, 730, 16355, 134004, 665445, 2437006, 7263815, 18654440, 42792009, 89837890, 175604011, 323639900, 567780525, 955201014, 1550024335, 2437528016, 3728995985, 5567261610, 8132988019, 11651731780, 16401836021, 22723199070, 31026964695
Offset: 1

Views

Author

N. J. A. Sloane, Jun 24 2015

Keywords

Crossrefs

Programs

  • Maple
    f:=n->add((2*i+1)^6,i=0..n);
    [seq(f(n),n=0..40)];
  • PARI
    Vec(x*(x^6+722*x^5+10543*x^4+23548*x^3+10543*x^2+722*x+1)/(x-1)^8 + O(x^100)) \\ Colin Barker, Jun 29 2015
    
  • PARI
    a(n) = n*(192*n^6-336*n^4+196*n^2-31)/21 \\ Charles R Greathouse IV, Jun 29 2015

Formula

a(n) = (n*(-31+196*n^2-336*n^4+192*n^6))/21. - Colin Barker, Jun 29 2015
G.f.: x*(x^6+722*x^5+10543*x^4+23548*x^3+10543*x^2+722*x+1) / (x-1)^8. - Colin Barker, Jun 29 2015

A016746 a(n) = (2*n)^6.

Original entry on oeis.org

0, 64, 4096, 46656, 262144, 1000000, 2985984, 7529536, 16777216, 34012224, 64000000, 113379904, 191102976, 308915776, 481890304, 729000000, 1073741824, 1544804416, 2176782336, 3010936384, 4096000000, 5489031744, 7256313856, 9474296896, 12230590464, 15625000000
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A016758.

Programs

Formula

G.f.: 64*x*(1+x)*(x^4 + 56*x^3 + 246*x^2 + 56*x + 1) / (1-x)^7. - R. J. Mathar, May 01 2015
E.g.f.: 64*x*(1 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Sep 15 2018
From Amiram Eldar, Oct 10 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^6/60480.
Sum_{n>=1} (-1)^(n+1)/a(n) = 31*Pi^6/1935360. (End)

A016830 a(n) = (4*n+2)^6.

Original entry on oeis.org

64, 46656, 1000000, 7529536, 34012224, 113379904, 308915776, 729000000, 1544804416, 3010936384, 5489031744, 9474296896, 15625000000, 24794911296, 38068692544, 56800235584, 82653950016, 117649000000, 164206490176, 225199600704, 304006671424, 404567235136, 531441000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    (4*Range[0,20]+2)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{64,46656,1000000,7529536,34012224,113379904,308915776},20] (* Harvey P. Dale, Oct 14 2012 *)

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jul 07 2022: (Start)
a(n) = A016825(n)^6 = A016826(n)^3 = A016827(n)^2 = 64*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/61440. (End)

A017118 a(n) = (8*n + 4)^6.

Original entry on oeis.org

4096, 2985984, 64000000, 481890304, 2176782336, 7256313856, 19770609664, 46656000000, 98867482624, 192699928576, 351298031616, 606355001344, 1000000000000, 1586874322944, 2436396322816, 3635215077376, 5289852801024, 7529536000000, 10509215371264, 14412774445056
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(8*n+4)^6: n in [0..20] ]; // Vincenzo Librandi, Jul 21 2011
  • Mathematica
    (8*Range[0,30]+4)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{4096,2985984,64000000,481890304,2176782336,7256313856,19770609664},30] (* Harvey P. Dale, Jan 07 2016 *)

Formula

G.f.: -4096*(1 + 722*x + 10543*x^2 + 23548*x^3 + 10543*x^4 + 722*x^5 + x^6)/(x-1)^7. - R. J. Mathar, May 08 2015
From Amiram Eldar, Apr 25 2023: (Start)
a(n) = A017113(n)^6.
a(n) = 2^6*A016830(n) = 2^12*A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/3932160. (End)

A017334 a(n) = (10*n + 5)^6.

Original entry on oeis.org

15625, 11390625, 244140625, 1838265625, 8303765625, 27680640625, 75418890625, 177978515625, 377149515625, 735091890625, 1340095640625, 2313060765625, 3814697265625, 6053445140625, 9294114390625, 13867245015625, 20179187015625, 28722900390625, 40089475140625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(10*n+5)^6: n in [0..25]]; // Vincenzo Librandi, Aug 02 2011
  • Mathematica
    (10*Range[0,20]+5)^6 (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{15625,11390625,244140625,1838265625,8303765625,27680640625,75418890625},20] (* Harvey P. Dale, Aug 13 2013 *)

Formula

G.f.: -15625*(x^6 + 722*x^5 + 10543*x^4 + 23548*x^3 + 10543*x^2 + 722*x + 1)/(x-1)^7. - Colin Barker, Nov 14 2012
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7); a(0)=15625, a(1)=11390625, a(2)=244140625, a(3)=1838265625, a(4)=8303765625, a(5)=27680640625, a(6)=75418890625. - Harvey P. Dale, Aug 13 2013
From Amiram Eldar, Apr 18 2023: (Start)
a(n) = A017329(n)^6.
a(n) = 5^6 * A016758(n).
Sum_{n>=0} 1/a(n) = Pi^6/15000000. (End)
Showing 1-6 of 6 results.