cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A302120 Absolute value of the numerators of a series converging to Euler's constant.

Original entry on oeis.org

3, 11, 1, 311, 5, 7291, 243, 14462317, 3364621, 3337014731, 3155743303, 65528247068741, 2627553901, 1439156737843967, 2213381206625, 21757704362231905789, 2627003970197650333, 64925181492079668050329, 523317843775891637, 161371847993975070290712761, 78461950306245817433389909
Offset: 1

Views

Author

Keywords

Comments

gamma = 3/4 - 11/96 - 1/72 - 311/46080 - 5/1152 - 7291/2322432 - ..., see formula (104) in the reference below.

Examples

			Numerators of 3/4, -11/96, -1/72, -311/46080, -5/1152, -7291/2322432, ...
		

Crossrefs

Cf. A302121 (denominators of this series), A262856, A262858.

Programs

  • Magma
    [3] cat [Abs(Numerator( (1/2)*(-1)^(n+1)*(&+[StirlingFirst(n-1,k)*((-1/2)^(k+1) + 1)/(k+1): k in [1..n-1]])/Factorial(n) + (-1)^(n+1)*(&+[StirlingFirst(n,k)/(k+1): k in [1..n]])/(n*Factorial(n)) )): n in [2..30]]; // G. C. Greubel, Oct 29 2018
  • Maple
    a:= proc(n) abs(numer((1/2)*(-1)^(n+1)*(add(Stirling1(n-1, l)*((-1/2)^(l+1)+1)/(l+1), l = 0 .. n-1))/(n)!+(-1)^(n+1)*(add(Stirling1(n, l)/(l+1), l = 1 .. n))/(n*(n)!))) end proc: seq(a(n), n=1..23);
  • Mathematica
    a[n_] := Numerator[(1/2)*(-1)^(n+1)*(Sum[StirlingS1[n-1,l]*((-1/2)^(l+1) + 1)/(l+1),{l,0,n-1}])/(n!) + (-1)^(n+1)*(Sum[StirlingS1[n, l]/(l+1),{l,1,n}])/(n*n!)]; Table[Abs[a[n]], {n, 1, 24}]
  • PARI
    a(n) = abs(numerator((1/2)*(-1)^(n+1)*(sum(l=0,n-1,stirling(n-1,l)*((-1/2)^(l+1) + 1)/(l+1))) /(n!) + (-1)^(n+1)*(sum(l=1,n,stirling(n,l)/(l+1)))/(n*n!)))
    

Formula

a(n) = abs(Numerators of ((1/2)*(-1)^(n+1)*(Sum_{l=0,n-1} (S_1(n-1,l)*((-1/2)^(l+1) + 1)/(l+1)))/(n!) + (-1)^(n+1)*(Sum_{l=1,n} S_1(n,l)/(l+1)))/(n*n!))), where S_1(x,y) are the signed Stirling numbers of the first kind.
Showing 1-1 of 1 results.