cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A089104 Duplicate of A007334.

Original entry on oeis.org

1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762
Offset: 2

Views

Author

Keywords

A296366 Erroneous version of A007334.

Original entry on oeis.org

2, 8, 50, 442
Offset: 2

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct versions.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). See Entry M1883.

A058127 Triangle read by rows: T(j,k) is the number of acyclic functions from {1,...,j} to {1,...,k}. For n >= 1, a(n) = (k-j)*k^(j-1), where k is such that C(k,2) < n <= C(k+1,2) and j = (n-1) mod C(k,2). Alternatively, table T(k,j) read by antidiagonals with k >= 1, 0 <= j <= k: T(k,j) = number of acyclic-function digraphs on k vertices with j vertices of outdegree 1 and (k-j) vertices of outdegree 0; T(k,j) = (k-j)*k^(j-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 16, 1, 4, 15, 50, 125, 1, 5, 24, 108, 432, 1296, 1, 6, 35, 196, 1029, 4802, 16807, 1, 7, 48, 320, 2048, 12288, 65536, 262144, 1, 8, 63, 486, 3645, 26244, 177147, 1062882, 4782969, 1, 9, 80, 700, 6000, 50000, 400000, 3000000, 20000000, 100000000
Offset: 1

Views

Author

Dennis P. Walsh, Nov 14 2000

Keywords

Comments

An acyclic function f from domain D={1,...,j} to codomain C={1,...,k} is a function such that, for every subset A of D, f(A) does not equal A. Equivalently, an acyclic function f "eventually sends" under successive composition all elements of D to {j+1,...,k}. An acyclic-function digraph G is a labeled directed graph that satisfies (i) all vertices have outdegree 0 or 1; (ii) if vertex x has outdegree 0 and vertex y has outdegree 1, then x > y; (iii) G has no cycles and no loops. There is a one-to-one correspondence between acyclic functions from D to C and acyclic-function digraphs with j vertices of outdegree 1 and j-k vertices of outdegree 0.
n-th row of the triangle is the n-th iterate of "perform binomial transform operation" (bto) on current row to get next row, extracting the leftmost n terms for n-th row (i.e., all terms left of the zero). First row is (bto): [1, -1, 0, 0, 0, ...]. 5th row is 1, 4, 15, 50, 125, since (bto) performed 5 times iteratively on [1, -1, 0, 0, 0, ...] = 1, 4, 15, 50, 125, 0, -31, ... - Gary W. Adamson, Apr 30 2005
T(k,j) can be shown to be equal to the number of spanning trees of the complete graph on k vertices that contain a specific subtree with k-j-1 edges. - John L. Chiarelli, Oct 04 2016
T(k-1, j-1) is also the number of parking functions with j cars and k spots (see Theorem 2.2 in Kenyon and Yin). - Stefano Spezia, Apr 09 2021

Examples

			a(6) = T(3,2) = 3 because there are 3 acyclic functions from {1,2} to {1,2,3}: {(1,2),(2,3)}, {(1,3),(2,3)} and {(1,3),(2,1)}.
Triangle begins:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  8,  16;
  1, 4, 15,  50,  125;
  1, 5, 24, 108,  432,  1296;
  1, 6, 35, 196, 1029,  4802, 16807;
  1, 7, 48, 320, 2048, 12288, 65536, 262144;
  ...
		

Crossrefs

The sum of antidiagonals is A058128. The sequence b(n) = T(n, n-1) for n >= 1 is A000272, labeled trees on n nodes.
The sequence c(n) = T(n, n-2) for n >= 2 is A007334(n). The sequence d(n) = T(n, n-3) for n >= 3 is A089463(n-3,0). - Peter Luschny, Apr 22 2009

Programs

  • Magma
    /* As triangle */ [[(n-k)*n^(k-1): k in [0..n-1]]: n in [1.. 10]]; // Vincenzo Librandi, Aug 11 2017
    
  • Maple
    T := proc(n,k) (n-k)*n^(k-1) end; seq(print(seq(T(n,k),k=0..n-1)),n=1..9); # Peter Luschny, Jan 14 2009
  • Mathematica
    t[n_, k_] := (n-k)*n^(k-1); Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 03 2013 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n==0, 1, (n-k) * n^(k-1))}; /* Michael Somos, Sep 20 2017 */

Formula

For fixed m = k-j, a(n) = T(k, j) = T(m+j, j) = m*(m+j)^(j-1). Exponential generating function g for T(m+j, j) = m*(m+j)^(j-1) is given by g(t) = exp(-m*W(-t)), where W denotes the principal branch of Lambert's W function. Lambert's W function satisfies W(t)*exp(W(t)) = t for t >= -exp(-1).
T(n, k) = Sum_{i=0..k} T(n-1, i) * binomial(k, i) if k < n. - Michael Somos, Sep 20 2017

Extensions

a(32) corrected by T. D. Noe, Jan 25 2008

A232006 Triangular array read by rows: T(n,k) is the number of simple labeled graphs on vertex set {1,2,...,n} with exactly k components (all of which are trees) such that the labels {1,2,...,k} are all in distinct components (trees), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 16, 8, 3, 1, 0, 125, 50, 15, 4, 1, 0, 1296, 432, 108, 24, 5, 1, 0, 16807, 4802, 1029, 196, 35, 6, 1, 0, 262144, 65536, 12288, 2048, 320, 48, 7, 1, 0, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 1, 0, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 1
Offset: 0

Views

Author

Geoffrey Critzer, Nov 16 2013

Keywords

Comments

Row sums = (n^n-n)/(n-1)^2 = A058128(n).
Column k without leading zeros is the k-th exponential (also called binomial) convolution of the sequence {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. LamberW(-x)/(-x), where LambertW is the principal branch of the Lambert W-function. This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = k. - Wolfdieter Lang, Apr 24 2023

Examples

			The triangle begins:
n\k  0         1        2       3      4     5    6   7  8 9 10 ...
0:   1
1:   0         1
2:   0         1        1
3:   0         3        2       1
4:   0        16        8       3      1
5:   0       125       50      15      4     1
6:   0      1296      432     108     24     5    1
7:   0     16807     4802    1029    196    35    6   1
8:   0    262144    65536   12288   2048   320   48   7  1
9:   0   4782969  1062882  177147  26244  3645  486  63  8 1
10:  0 100000000 20000000 3000000 400000 50000 6000 700 80 9  1
... Reformatted by _Wolfdieter Lang_, Apr 24 2023
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Proposition 5.3.2.

Crossrefs

Columns give A000007, A000272, A007334, A362354, A362355, A362356, ...

Programs

  • Mathematica
    Prepend[Table[Table[k n^(n-k-1),{k,0,n}],{n,1,8}],{1}]//Grid
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* Michael Somos, May 15 2017 */

Formula

T(n, k) = k*n^(n-k-1).
T(n, k) = Sum_{i=0..n-k} T(n-1, k-1+i)*C(n-k,i), T(0, 0) = 1, T(n, 0) = 0 when n >= 1.
From Wolfdieter Lang, Apr 24 2023: (Start)
E.g.f. for {T(n+k, k)}_{n>=0} is (LambertW(-x)/(-x))^k, for k >= 0.
T(n, k) = Sum_{m=0..n-k} |A137452(n-k, m)|*k^m, for n >= 0 and k = 0..n. That is, T(n, n) = 1, for n >= 0, and T(n, k) = Sum_{m=1..n-k} binomial(n-k-1, m-1)*(n-k)^(n-k-m)*k^m, for k = 0..n-1 and n >= k+1. (End)

A379611 Table read by rows: T(n, k) = (n + 1)^(n - 1) - (k - 1)*(n + 1)^(n - 2), by convention T(1, 0) = 1.

Original entry on oeis.org

2, 1, 1, 4, 3, 2, 20, 16, 12, 8, 150, 125, 100, 75, 50, 1512, 1296, 1080, 864, 648, 432, 19208, 16807, 14406, 12005, 9604, 7203, 4802, 294912, 262144, 229376, 196608, 163840, 131072, 98304, 65536, 5314410, 4782969, 4251528, 3720087, 3188646, 2657205, 2125764, 1594323, 1062882
Offset: 0

Views

Author

Peter Luschny, Dec 27 2024

Keywords

Examples

			Triangle starts:
  [0]      2;
  [1]      1,      1;
  [2]      4,      3,      2;
  [3]     20,     16,     12,      8;
  [4]    150,    125,    100,     75,     50;
  [5]   1512,   1296,   1080,    864,    648,    432;
  [6]  19208,  16807,  14406,  12005,   9604,   7203,  4802;
  [7] 294912, 262144, 229376, 196608, 163840, 131072, 98304, 65536;
		

Crossrefs

Cf. A007334 (main diagonal), A374756, A375616, A379612 (column 0), A379613.

Programs

  • Maple
    T := (n, k) -> ifelse(n=1 and k=0, 1, (n + 1)^(n - 1) - (k - 1)*(n + 1)^(n - 2)):
  • Mathematica
    T[n_, k_] := T[n, k] = (n + 1)^(n - 1) - (k - 1)*(n + 1)^(n - 2); T[1, 0] := 1;
    Flatten@ Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Michael De Vlieger, Dec 27 2024 *)

Formula

T(n, k) = (n + 1)^(n - 2)*(n - k + 2), if (n, k) != (1, 0).
T(n, k) = (1 - (k - 1)/(n + 1))*(n + 1)^(n - 1), if (n, k) != (1, 0).

A379613 a(n) = n^(n - 1) - 2*(n + 1)^(n - 2), by convention a(0) = 0.

Original entry on oeis.org

0, 0, 0, 1, 14, 193, 2974, 52113, 1034270, 23046721, 571282238, 15617863897, 467291386990, 15198954783153, 534222097472894, 20185726770649633, 816165851488045118, 35167910642711951617, 1609028732603454196606, 77912950297911241532841, 3981118415206568940420878
Offset: 0

Views

Author

Peter Luschny, Dec 27 2024

Keywords

Crossrefs

Programs

  • Magma
    A379613:= func< n | n eq 0 select 0 else n^(n-1) -2*(n+1)^(n-2) >;
    [A379613(n): n in [0..30]]; // G. C. Greubel, Mar 19 2025
    
  • Maple
    a := n -> ifelse(n = 0, 0, n^(n-1) - 2*(n+1)^(n-2)): seq(a(n), n = 0..20);
  • Mathematica
    {0}~Join~Table[n^(n - 1) - 2*(n + 1)^(n - 2), {n, 20}] (* Michael De Vlieger, Dec 27 2024 *)
  • SageMath
    def A379613(n): return 0 if n==0 else n^(n-1) -2*(n+1)^(n-2)
    print([A379613(n) for n in range(31)]) # G. C. Greubel, Mar 19 2025

Formula

a(n) = A000169(n) - A007334(n+1) for n > 0. In the context of parking functions this is the difference between the main diagonals of A374756 and A379611. See corollary 3.1 and Table 2 in Butler et al.
E.g.f.: (1/(4*x))*((2*W(-x) + 2 - x)^2 - (4 - 12*x + x^2)), W(x) = Lambert W function. - G. C. Greubel, Mar 19 2025

A362353 Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.

Original entry on oeis.org

1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0

Views

Author

Keywords

Comments

This is the member N = 2 of a family of signed triangles with row sums n! = A000142(n): T(N; n, k) = (-1)^(n-k)*binomial(n, k)*(k + N + 1)^n, for integer N, n >= 0 and k = 0, 1, ..., n. The row polynomials PS(N; n, z) = Sum_{k=0..n} T(N; n, k)*z^k = ((-1)^n/z^N)*D_{n,N+1,n}(z) in [Sidi 1980].
For N = -1, 0 and 1 see A258773(n, k), A075513(n+1, k) and (-1)^(n-k) * A154715(n, k), respectively.
The column sequences, for k = 0, 1, ..., 6 and n >= k, are A141413(n+2), (-1)^(n+1)*A018215(n) = 4*(-1)^(n+1)*A002697(n), 5^2*(-1)^n*A081135(n), (-1)^(n+1)*A128964(n-1) = 6^3*(-1)^(n+1)*A081144(n), 7^4*(-1)^n*A139641(n-4), 2^15*(-1)^(n+1)*A173155(n-5), 3^12*(-1)^n*A173191(n-6), respectively.
The e.g.f. of the triangle (see below) needs the exponential convolution (LambertW(-z)/(-z))^2 = Sum_{n>=0} c(2; n)*z^n/n!, where c(2; n) = Sum_{m=0..n} |A137352(n+1, m)|*2^m = A007334(n+2).
The row sums give n! = A000142(n).

Examples

			The triangle T begins:
n\k    0       1        2         3         4          5          6         7
0:     1
1:    -3       4
2:     9     -32       25
3:   -27     192     -375       216
4:    81   -1024     3750     -5184      2401
5:  -243    5120   -31250     77760    -84035      32768
6:   729  -24576   234375   -933120   1764735   -1572864     531441
7: -2187  114688 -1640625   9797760 -28824005   44040192  -33480783  10000000
...
n = 8:  6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
		

Crossrefs

Cf. A000142 (row sums), A075513, A154715, A258773.
Columns k = 0..6 involve (see above): A002697, A007334, A018215, A081135, A081144, A128964, A137352, A139641, A141413, A173155, A173191.

Programs

  • Mathematica
    A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* Paolo Xausa, Jul 30 2023 *)

Formula

T(n, k) = (-1)^(n-k)*binomial(n, k)*(k + 3)^n, for n >= 0, k = 0, 1, ..., n.
O.g.f. of column k: (x*(k + 3))^k/(1 - (k + 3)*x)^(k+1), for k >= 0.
E.g.f. of column k: exp(-(k + 3)*x)*((k + 3)*x)^k/k!, for k >= 0.
E.g.f. of the triangle, that is, the e.g.f. of its row polynomials {PS(2;n,y)}_{n>=0}): ES(2;y,x) = exp(-3*x)*(1/3)*(d/dz)(W(-z)/(-z))^2, after replacing z by x*y*exp(-x), where W is the Lambert W-function for the principal branch. This becomes ES(2;y,x) = exp(-3*x)*exp(3*(-W(-z)))/(1 - (-W(-z)), with z = x*y*exp(-x).

Extensions

a(41)-a(44) from Paolo Xausa, Jul 31 2023

A385085 a(n) = 2 * (3*n+2)^(n-1).

Original entry on oeis.org

1, 2, 16, 242, 5488, 167042, 6400000, 296071778, 16063620352, 1000492825922, 70368744177664, 5517094707031250, 477144100447105024, 45126980600732372162, 4633559988356427808768, 513333972375334818668738, 61035156250000000000000000, 7752538100237033690795744642
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/3*lambertw(-3*x))))

Formula

E.g.f.: exp(-2/3 * LambertW(-3*x)).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052752.
E.g.f. A(x) satisfies:
(1) A(x) = exp(2*x*A(x)^(3/2)).
(2) A(x) = 1/A(-x*A(x)^3).

A385086 a(n) = 2 * (5*n+2)^(n-1).

Original entry on oeis.org

1, 2, 24, 578, 21296, 1062882, 67108864, 5131452818, 461078666496, 47622573323522, 5559811767271424, 724066662913782498, 104073121367674187776, 16365437809265714289122, 2794811034494209364066304, 515110198093444174897047218, 101914923171285428527995355136
Offset: 0

Views

Author

Seiichi Manyama, Jun 17 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/5*lambertw(-5*x))))

Formula

E.g.f.: exp(-2/5 * LambertW(-5*x)).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052782.
E.g.f. A(x) satisfies:
(1) A(x) = exp(2*x*A(x)^(5/2)).
(2) A(x) = 1/A(-x*A(x)^5).

A338280 Triangle T read by rows: T(n, k) = k*n^(n-k-1) with 0 < k < n.

Original entry on oeis.org

1, 3, 2, 16, 8, 3, 125, 50, 15, 4, 1296, 432, 108, 24, 5, 16807, 4802, 1029, 196, 35, 6, 262144, 65536, 12288, 2048, 320, 48, 7, 4782969, 1062882, 177147, 26244, 3645, 486, 63, 8, 100000000, 20000000, 3000000, 400000, 50000, 6000, 700, 80, 9, 2357947691, 428717762, 58461513, 7086244, 805255, 87846, 9317, 968, 99, 10
Offset: 2

Views

Author

Stefano Spezia, Oct 20 2020

Keywords

Comments

T(n, k) is the number of forests of n - k edges that connect every other labeled vertex to one of the k roots (see Section 3 in Wästlund).

References

  • Alfred Rényi, Some remarks on the theory of trees. MTA Mat. Kut. Inst. Kozl. (Publ. math. Inst. Hungar. Acad. Sci) 4 (1959), 73-85.

Crossrefs

Cf. A000027 (diagonal), A000169, A000272 (1st column), A000312, A007334 (2nd column), A023811 (row sums), A034941, A072590, A075363, A210725.

Programs

  • Mathematica
    Table[k*n^(n-k-1),{n,2,11},{k,1,n-1}]//Flatten
Showing 1-10 of 12 results. Next