A089104 Duplicate of A007334.
1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762
Offset: 2
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(6) = T(3,2) = 3 because there are 3 acyclic functions from {1,2} to {1,2,3}: {(1,2),(2,3)}, {(1,3),(2,3)} and {(1,3),(2,1)}. Triangle begins: 1; 1, 1; 1, 2, 3; 1, 3, 8, 16; 1, 4, 15, 50, 125; 1, 5, 24, 108, 432, 1296; 1, 6, 35, 196, 1029, 4802, 16807; 1, 7, 48, 320, 2048, 12288, 65536, 262144; ...
/* As triangle */ [[(n-k)*n^(k-1): k in [0..n-1]]: n in [1.. 10]]; // Vincenzo Librandi, Aug 11 2017
T := proc(n,k) (n-k)*n^(k-1) end; seq(print(seq(T(n,k),k=0..n-1)),n=1..9); # Peter Luschny, Jan 14 2009
t[n_, k_] := (n-k)*n^(k-1); Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 03 2013 *)
{T(n, k) = if( k<0 || k>n, 0, n==0, 1, (n-k) * n^(k-1))}; /* Michael Somos, Sep 20 2017 */
The triangle begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 0 1 1 3: 0 3 2 1 4: 0 16 8 3 1 5: 0 125 50 15 4 1 6: 0 1296 432 108 24 5 1 7: 0 16807 4802 1029 196 35 6 1 8: 0 262144 65536 12288 2048 320 48 7 1 9: 0 4782969 1062882 177147 26244 3645 486 63 8 1 10: 0 100000000 20000000 3000000 400000 50000 6000 700 80 9 1 ... Reformatted by _Wolfdieter Lang_, Apr 24 2023
Prepend[Table[Table[k n^(n-k-1),{k,0,n}],{n,1,8}],{1}]//Grid
{T(n, k) = if( k<0 || k>n, 0, n^(n-k-1))}; /* Michael Somos, May 15 2017 */
Triangle starts: [0] 2; [1] 1, 1; [2] 4, 3, 2; [3] 20, 16, 12, 8; [4] 150, 125, 100, 75, 50; [5] 1512, 1296, 1080, 864, 648, 432; [6] 19208, 16807, 14406, 12005, 9604, 7203, 4802; [7] 294912, 262144, 229376, 196608, 163840, 131072, 98304, 65536;
T := (n, k) -> ifelse(n=1 and k=0, 1, (n + 1)^(n - 1) - (k - 1)*(n + 1)^(n - 2)):
T[n_, k_] := T[n, k] = (n + 1)^(n - 1) - (k - 1)*(n + 1)^(n - 2); T[1, 0] := 1; Flatten@ Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Michael De Vlieger, Dec 27 2024 *)
A379613:= func< n | n eq 0 select 0 else n^(n-1) -2*(n+1)^(n-2) >; [A379613(n): n in [0..30]]; // G. C. Greubel, Mar 19 2025
a := n -> ifelse(n = 0, 0, n^(n-1) - 2*(n+1)^(n-2)): seq(a(n), n = 0..20);
{0}~Join~Table[n^(n - 1) - 2*(n + 1)^(n - 2), {n, 20}] (* Michael De Vlieger, Dec 27 2024 *)
def A379613(n): return 0 if n==0 else n^(n-1) -2*(n+1)^(n-2) print([A379613(n) for n in range(31)]) # G. C. Greubel, Mar 19 2025
The triangle T begins: n\k 0 1 2 3 4 5 6 7 0: 1 1: -3 4 2: 9 -32 25 3: -27 192 -375 216 4: 81 -1024 3750 -5184 2401 5: -243 5120 -31250 77760 -84035 32768 6: 729 -24576 234375 -933120 1764735 -1572864 531441 7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000 ... n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588, n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
A362353row[n_]:=Table[(-1)^(n-k)Binomial[n,k](k+3)^n,{k,0,n}];Array[A362353row,10,0] (* Paolo Xausa, Jul 30 2023 *)
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/3*lambertw(-3*x))))
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-2/5*lambertw(-5*x))))
Table[k*n^(n-k-1),{n,2,11},{k,1,n-1}]//Flatten
Comments