cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A000272 Number of trees on n labeled nodes: n^(n-2) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, 100000000, 2357947691, 61917364224, 1792160394037, 56693912375296, 1946195068359375, 72057594037927936, 2862423051509815793, 121439531096594251776, 5480386857784802185939, 262144000000000000000000, 13248496640331026125580781
Offset: 0

Views

Author

Keywords

Comments

Number of spanning trees in complete graph K_n on n labeled nodes.
Robert Castelo, Jan 06 2001, observes that n^(n-2) is also the number of transitive subtree acyclic digraphs on n-1 vertices.
a(n) is also the number of ways of expressing an n-cycle in the symmetric group S_n as a product of n-1 transpositions, see example. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 12 2001
Also counts parking functions, critical configurations of the chip firing game, allowable pairs sorted by a priority queue [Hamel].
The parking functions of length n can be described as all permutations of all words [d(1),d(2), ..., d(n)] where 1 <= d(k) <= k; see example. There are (n+1)^(n-1) = a(n+1) parking functions of length n. - Joerg Arndt, Jul 15 2014
a(n+1) is the number of endofunctions with no cycles of length > 1; number of forests of rooted labeled trees on n vertices. - Mitch Harris, Jul 06 2006
a(n) is also the number of nilpotent partial bijections (of an n-element set). Equivalently, the number of nilpotents in the partial symmetric semigroup, P sub n. - Abdullahi Umar, Aug 25 2008
a(n) is also the number of edge-labeled rooted trees on n nodes. - Nikos Apostolakis, Nov 30 2008
a(n+1) is the number of length n sequences on an alphabet of {1,2,...,n} that have a partial sum equal to n. For example a(4)=16 because there are 16 length 3 sequences on {1,2,3} in which the terms (beginning with the first term and proceeding sequentially) sum to 3 at some point in the sequence. {1, 1, 1}, {1, 2, 1}, {1, 2, 2}, {1, 2, 3}, {2, 1, 1}, {2, 1, 2}, {2, 1, 3}, {3, 1, 1}, {3, 1, 2}, {3, 1, 3}, {3, 2, 1}, {3, 2, 2}, {3, 2, 3}, {3, 3, 1}, {3, 3, 2}, {3, 3, 3}. - Geoffrey Critzer, Jul 20 2009
a(n) is the number of acyclic functions from {1,2,...,n-1} to {1,2,...,n}. An acyclic function f satisfies the following property: for any x in the domain, there exists a positive integer k such that (f^k)(x) is not in the domain. Note that f^k denotes the k-fold composition of f with itself, e.g., (f^2)(x)=f(f(x)). - Dennis P. Walsh, Mar 02 2011
a(n) is the absolute value of the discriminant of the polynomial x^{n-1}+...+x+1. More precisely, a(n) = (-1)^{(n-1)(n-2)/2} times the discriminant. - Zach Teitler, Jan 28 2014
For n > 2, a(n+2) is the number of nodes in the canonical automaton for the affine Weyl group of type A_n. - Tom Edgar, May 12 2016
The tree formula a(n) = n^(n-2) is due to Cayley (see the first comment). - Jonathan Sondow, Jan 11 2018
a(n) is the number of topologically distinct lines of play for the game Planted Brussels Sprouts on n vertices. See Ji and Propp link. - Caleb Ji, May 11 2018
a(n+1) is also the number of bases of R^n, that can be made from the n(n+1)/2 vectors of the form [0 ... 0 1 ... 1 0 ... 0]^T, where the initial or final zeros are optional, but at least one 1 has to be included. - Nicolas Nagel, Jul 31 2018
Cooper et al. show that every connected k-chromatic graph contains at least k^(k-2) spanning trees. - Michel Marcus, May 14 2020

Examples

			a(7)=matdet([196, 175, 140, 98, 56, 21; 175, 160, 130, 92, 53, 20; 140, 130, 110, 80, 47, 18; 98, 92, 80, 62, 38, 15; 56, 53, 47, 38, 26, 11; 21, 20, 18, 15, 11, 6])=16807
a(3)=3 since there are 3 acyclic functions f:[2]->[3], namely, {(1,2),(2,3)}, {(1,3),(2,1)}, and {(1,3),(2,3)}.
From _Joerg Arndt_ and Greg Stevenson, Jul 11 2011: (Start)
The following products of 3 transpositions lead to a 4-cycle in S_4:
  (1,2)*(1,3)*(1,4);
  (1,2)*(1,4)*(3,4);
  (1,2)*(3,4)*(1,3);
  (1,3)*(1,4)*(2,3);
  (1,3)*(2,3)*(1,4);
  (1,4)*(2,3)*(2,4);
  (1,4)*(2,4)*(3,4);
  (1,4)*(3,4)*(2,3);
  (2,3)*(1,2)*(1,4);
  (2,3)*(1,4)*(2,4);
  (2,3)*(2,4)*(1,2);
  (2,4)*(1,2)*(3,4);
  (2,4)*(3,4)*(1,2);
  (3,4)*(1,2)*(1,3);
  (3,4)*(1,3)*(2,3);
  (3,4)*(2,3)*(1,2).  (End)
The 16 parking functions of length 3 are 111, 112, 121, 211, 113, 131, 311, 221, 212, 122, 123, 132, 213, 231, 312, 321. - _Joerg Arndt_, Jul 15 2014
G.f. = 1 + x + x^2 + 3*x^3 + 16*x^4 + 125*x^5 + 1296*x^6 + 16807*x^7 + ...
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 142.
  • Anders Björner and Francesco Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 311.
  • J. Dénes, The representation of a permutation as the product of a minimal number of transpositions and its connection with the theory of graphs, Pub. Math. Inst. Hung. Acad. Sci., 4 (1959), 63-70.
  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 3.3.33.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 524.
  • F. Harary, J. A. Kabell, and F. R. McMorris (1992), Subtree acyclic digraphs, Ars Comb., vol. 34:93-95.
  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992, Eq. (4.2.2.37)
  • H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Mathematik und Physik, (3) 27 (1918), 142-144.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 25, Prop. 5.3.2.
  • J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992.

Crossrefs

a(n) = A033842(n-1, 0) (first column of triangle).
a(n) = A058127(n-1, n) (right edge of triangle).
Cf. A000272 (labeled trees), A036361 (labeled 2-trees), A036362 (labeled 3-trees), A036506 (labeled 4-trees), A000055 (unlabeled trees), A054581 (unlabeled 2-trees).
Column m=1 of A105599. - Alois P. Heinz, Apr 10 2014

Programs

  • Haskell
    a000272 0 = 1; a000272 1 = 1
    a000272 n = n ^ (n - 2)  -- Reinhard Zumkeller, Jul 07 2013
    
  • Magma
    [ n^(n-2) : n in [1..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    A000272 := n -> ifelse(n=0, 1, n^(n-2)): seq(A000272(n), n = 0..20); # Peter Luschny, Jun 12 2022
  • Mathematica
    << DiscreteMath`Combinatorica` Table[NumberOfSpanningTrees[CompleteGraph[n]], {n, 1, 20}] (* Artur Jasinski, Dec 06 2007 *)
    Join[{1},Table[n^(n-2),{n,20}]] (* Harvey P. Dale, Nov 28 2012 *)
    a[ n_] := If[ n < 1, Boole[n == 0], n^(n - 2)]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ 1 - LambertW[-x] - LambertW[-x]^2 / 2, {x, 0, n}]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[ {m = n - 1}, m! SeriesCoefficient[ Exp[ -LambertW[-x]], {x, 0, m}]]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 2, Boole[n >= 0], With[ {m = n - 1}, m! SeriesCoefficient[ InverseSeries[ Series[ Log[1 + x] / (1 + x), {x, 0, m}]], m]]]; (* Michael Somos, May 25 2014 *)
    a[ n_] := If[ n < 1, Boole[n == 0], With[ {m = n - 1}, m! SeriesCoefficient[ Nest[ 1 + Integrate[ #^2 / (1 - x #), x] &, 1 + O[x], m], {x, 0, m}]]]; (* Michael Somos, May 25 2014 *)
  • Maxima
    A000272[n]:=if n=0 then 1 else n^(n-2)$
    makelist(A000272[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    {a(n) = if( n<1, n==0, n^(n-2))}; /* Michael Somos, Feb 16 2002 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--; A = 1 + O(x); for(k=1, n, A = 1 + intformal( A^2 / (1 - x * A))); n! * polcoeff( A, n))}; /* Michael Somos, May 25 2014 */
    
  • PARI
    /* GP Function for Determinant of Hermitian (square symmetric) matrix for univariate polynomial of degree n by Gerry Martens: */
    Hn(n=2)= {local(H=matrix(n-1,n-1),i,j); for(i=1,n-1, for(j=1,i, H[i,j]=(n*i^3-3*n*(n+1)*i^2/2+n*(3*n+1)*i/2+(n^4-n^2)/2)/6-(i^2-(2*n+1)*i+n*(n+1))*(j-1)*j/4; H[j,i]=H[i,j]; ); ); print("a(",n,")=matdet(",H,")"); print("Determinant H =",matdet(H)); return(matdet(H)); } { print(Hn(7)); } /* Gerry Martens, May 04 2007 */
    
  • Python
    def A000272(n): return 1 if n <= 1 else n**(n-2) # Chai Wah Wu, Feb 03 2022

Formula

E.g.f.: 1 + T - (1/2)*T^2; where T=T(x) is Euler's tree function (see A000169, also A001858). - Len Smiley, Nov 19 2001
Number of labeled k-trees on n nodes is binomial(n, k) * (k*(n-k)+1)^(n-k-2).
E.g.f. for b(n)=a(n+2): ((W(-x)/x)^2)/(1+W(-x)), where W is Lambert's function (principal branch). [Equals d/dx (W(-x)/(-x)). - Wolfdieter Lang, Oct 25 2022]
Determinant of the symmetric matrix H generated for a polynomial of degree n by: for(i=1,n-1, for(j=1,i, H[i,j]=(n*i^3-3*n*(n+1)*i^2/2+n*(3*n+1)*i/2+(n^4-n^2)/2)/6-(i^2-(2*n+1)*i+n*(n+1))*(j-1)*j/4; H[j,i]=H[i,j]; ); );. - Gerry Martens, May 04 2007
a(n+1) = Sum_{i=1..n} i * n^(n-1-i) * binomial(n, i). - Yong Kong (ykong(AT)curagen.com), Dec 28 2000
For n >= 1, a(n+1) = Sum_{i=1..n} n^(n-i)*binomial(n-1,i-1). - Geoffrey Critzer, Jul 20 2009
E.g.f. for b(n)=a(n+1): exp(-W(-x)), where W is Lambert's function satisfying W(x)*exp(W(x))=x. Proof is contained in link "Notes on acyclic functions..." - Dennis P. Walsh, Mar 02 2011
From Sergei N. Gladkovskii, Sep 18 2012: (Start)
E.g.f.: 1 + x + x^2/(U(0) - x) where U(k) = x*(k+1)*(k+2)^k + (k+1)^k*(k+2) - x*(k+2)^2*(k+3)*((k+1)*(k+3))^k/U(k+1); (continued fraction).
G.f.: 1 + x + x^2/(U(0)-x) where U(k) = x*(k+1)*(k+2)^k + (k+1)^k - x*(k+2)*(k+3)*((k+1)*(k+3))^k/E(k+1); (continued fraction). (End)
Related to A000254 by Sum_{n >= 1} a(n+1)*x^n/n! = series reversion( 1/(1 + x)*log(1 + x) ) = series reversion(x - 3*x^2/2! + 11*x^3/3! - 50*x^4/4! + ...). Cf. A052750. - Peter Bala, Jun 15 2016
For n >= 3 and 2 <= k <= n-1, the number of trees on n vertices with exactly k leaves is binomial(n,k)*S(n-2,n-k)(n-k)! where S(a,b) is the Stirling number of the second kind. Therefore a(n) = Sum_{k=2..n-1} binomial(n,k)*S(n-2,n-k)(n-k)! for n >= 3. - Jonathan Noel, May 05 2017

A074909 Running sum of Pascal's triangle (A007318), or beheaded Pascal's triangle read by beheaded rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Wouter Meeussen, Oct 01 2002

Keywords

Comments

This sequence counts the "almost triangular" partitions of n. A partition is triangular if it is of the form 0+1+2+...+k. Examples: 3=0+1+2, 6=0+1+2+3. An "almost triangular" partition is a triangular partition with at most 1 added to each of the parts. Examples: 7 = 1+1+2+3 = 0+2+2+3 = 0+1+3+3 = 0+1+2+4. Thus a(7)=4. 8 = 1+2+2+3 = 1+1+3+3 = 1+1+2+4 = 0+2+3+3 = 0+2+2+4 = 0+1+3+4 so a(8)=6. - Moshe Shmuel Newman, Dec 19 2002
The "almost triangular" partitions are the ones cycled by the operation of "Bulgarian solitaire", as defined by Martin Gardner.
Start with A007318 - I (I = Identity matrix), then delete right border of zeros. - Gary W. Adamson, Jun 15 2007
Also the number of increasing acyclic functions from {1..n-k+1} to {1..n+2}. A function f is acyclic if for every subset B of the domain the image of B under f does not equal B. For example, T(3,1)=4 since there are exactly 4 increasing acyclic functions from {1,2,3} to {1,2,3,4,5}: f1={(1,2),(2,3),(3,4)}, f2={(1,2),(2,3),(3,5)}, f3={(1,2),(2,4),(3,5)} and f4={(1,3),(2,4),(4,5)}. - Dennis P. Walsh, Mar 14 2008
Second Bernoulli polynomials are (from A164555 instead of A027641) B2(n,x) = 1; 1/2, 1; 1/6, 1, 1; 0, 1/2, 3/2, 1; -1/30, 0, 1, 2, 1; 0, -1/6, 0, 5/3, 5/2, 1; ... . Then (B2(n,x)/A002260) = 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; ... . See (from Faulhaber 1631) Jacob Bernoulli Summae Potestatum (sum of powers) in A159688. Inverse polynomials are 1; -1, 2; 1, -3, 3; -1, 4, -6, 4; ... = A074909 with negative even diagonals. Reflected A053382/A053383 = reflected B(n,x) = RB(n,x) = 1; -1/2, 1; 1/6, -1, 1; 0, 1/2, -3/2, 1; ... . A074909 is inverse of RB(n,x)/A002260 = 1; -1/2, 1/2; 1/6, -1/2, 1/3; 0, 1/4, -1/2, 1/4; ... . - Paul Curtz, Jun 21 2010
A054143 is the fission of the polynomial sequence (p(n,x)) given by p(n,x) = x^n + x^(n-1) + ... + x + 1 by the polynomial sequence ((x+1)^n). See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Reversal of A135278. - Philippe Deléham, Feb 11 2012
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
From A238363, the operator equation d/d(:xD:)f(xD)={exp[d/d(xD)]-1}f(xD) = f(xD+1)-f(xD) follows. Choosing f(x) = x^n and using :xD:^n/n! = binomial(xD,n) and (xD)^n = Bell(n,:xD:), the Bell polynomials of A008277, it follows that the lower triangular matrix [padded A074909]
A) = [St2]*[dP]*[St1] = A048993*A132440*[padded A008275]
B) = [St2]*[dP]*[St2]^(-1)
C) = [St1]^(-1)*[dP]*[St1],
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 whereas [padded A074909]=A007318-I with I=identity matrix. - Tom Copeland, Apr 25 2014
T(n,k) generated by m-gon expansions in the case of odd m with "vertex to side" version or even m with "vertex to vertes" version. Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as a triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to side" version or (ii) m is even and expansion is "vertex to vertex" version. m*Sum_{i=1..k} T(n,k) gives the total label value at the n-th iteration. See also A247976. Vertex to vertex: A061777, A247618, A247619, A247620. Vertex to side: A101946, A247903, A247904, A247905. - Kival Ngaokrajang Sep 28 2014
From Tom Copeland, Nov 12 2014: (Start)
With P(n,x) = [(x+1)^(n+1)-x^(n+1)], the row polynomials of this entry, Up(n,x) = P(n,x)/(n+1) form an Appell sequence of polynomials that are the umbral compositional inverses of the Bernoulli polynomials B(n,x), i.e., B[n,Up(.,x)] = x^n = Up[n,B(.,x)] under umbral substitution, e.g., B(.,x)^n = B(n,x).
The e.g.f. for the Bernoulli polynomials is [t/(e^t - 1)] e^(x*t), and for Up(n,x) it's exp[Up(.,x)t] = [(e^t - 1)/t] e^(x*t).
Another g.f. is G(t,x) = log[(1-x*t)/(1-(1+x)*t)] = log[1 + t /(1 + -(1+x)t)] = t/(1-t*Up(.,x)) = Up(0,x)*t + Up(1,x)*t^2 + Up(2,x)*t^3 + ... = t + (1+2x)/2 t^2 + (1+3x+3x^2)/3 t^3 + (1+4x+6x^2+4x^3)/4 t^4 + ... = -log(1-t*P(.,x)), expressed umbrally.
The inverse, Ginv(t,x), in t of the g.f. may be found in A008292 from Copeland's list of formulas (Sep 2014) with a=(1+x) and b=x. This relates these two sets of polynomials to algebraic geometry, e.g., elliptic curves, trigonometric expansions, Chebyshev polynomials, and the combinatorics of permutahedra and their duals.
Ginv(t,x) = [e^((1+x)t) - e^(xt)] / [(1+x) * e^((1+x)t) - x * e^(xt)] = [e^(t/2) - e^(-t/2)] / [(1+x)e^(t/2) - x*e^(-t/2)] = (e^t - 1) / [1 + (1+x) (e^t - 1)] = t - (1 + 2 x) t^2/2! + (1 + 6 x + 6 x^2) t^3/3! - (1 + 14 x + 36 x^2 + 24 x^3) t^4/4! + ... = -exp[-Perm(.,x)t], where Perm(n,x) are the reverse face polynomials, or reverse f-vectors, for the permutahedra, i.e., the face polynomials for the duals of the permutahedra. Cf. A090582, A019538, A049019, A133314, A135278.
With L(t,x) = t/(1+t*x) with inverse L(t,-x) in t, and Cinv(t) = e^t - 1 with inverse C(t) = log(1 + t). Then Ginv(t,x) = L[Cinv(t),(1+x)] and G(t,x) = C[L[t,-(1+x)]]. Note L is the special linear fractional (Mobius) transformation.
Connections among the combinatorics of the permutahedra, simplices (cf. A135278), and the associahedra can be made through the Lagrange inversion formula (LIF) of A133437 applied to G(t,x) (cf. A111785 and the Schroeder paths A126216 also), and similarly for the LIF A134685 applied to Ginv(t,x) involving the simplicial Whitehouse complex, phylogenetic trees, and other structures. (See also the LIFs A145271 and A133932). (End)
R = x - exp[-[B(n+1)/(n+1)]D] = x - exp[zeta(-n)D] is the raising operator for this normalized sequence UP(n,x) = P(n,x) / (n+1), that is, R UP(n,x) = UP(n+1,x), where D = d/dx, zeta(-n) is the value of the Riemann zeta function evaluated at -n, and B(n) is the n-th Bernoulli number, or constant B(n,0) of the Bernoulli polynomials. The raising operator for the Bernoulli polynomials is then x + exp[-[B(n+1)/(n+1)]D]. [Note added Nov 25 2014: exp[zeta(-n)D] is abbreviation of exp(a.D) with (a.)^n = a_n = zeta(-n)]. - Tom Copeland, Nov 17 2014
The diagonals T(n, n-m), for n >= m, give the m-th iterated partial sum of the positive integers; that is A000027(n+1), A000217(n), A000292(n-1), A000332(n+1), A000389(n+1), A000579(n+1), A000580(n+1), A000581(n+1), A000582(n+1), ... . - Wolfdieter Lang, May 21 2015
The transpose gives the numerical coefficients of the Maurer-Cartan form matrix for the general linear group GL(n,1) (cf. Olver, but note that the formula at the bottom of p. 6 has an error--the 12 should be a 15). - Tom Copeland, Nov 05 2015
The left invariant Maurer-Cartan form polynomial on p. 7 of the Olver paper for the group GL^n(1) is essentially a binomial convolution of the row polynomials of this entry with those of A133314, or equivalently the row polynomials generated by the product of the e.g.f. of this entry with that of A133314, with some reindexing. - Tom Copeland, Jul 03 2018
From Tom Copeland, Jul 10 2018: (Start)
The first column of the inverse matrix is the sequence of Bernoulli numbers, which follows from the umbral definition of the Bernoulli polynomials (B.(0) + x)^n = B_n(x) evaluated at x = 1 and the relation B_n(0) = B_n(1) for n > 1 and -B_1(0) = 1/2 = B_1(1), so the Bernoulli numbers can be calculated using Cramer's rule acting on this entry's matrix and, therefore, from the ratios of volumes of parallelepipeds determined by the columns of this entry's square submatrices. - Tom Copeland, Jul 10 2018
Umbrally composing the row polynomials with B_n(x), the Bernoulli polynomials, gives (B.(x)+1)^(n+1) - (B.(x))^(n+1) = d[x^(n+1)]/dx = (n+1)*x^n, so multiplying this entry as a lower triangular matrix (LTM) by the LTM of the coefficients of the Bernoulli polynomials gives the diagonal matrix of the natural numbers. Then the inverse matrix of this entry has the elements B_(n,k)/(k+1), where B_(n,k) is the coefficient of x^k for B_n(x), and the e.g.f. (1/x) (e^(xt)-1)/(e^t-1). (End)

Examples

			T(4,2) = 0+0+1+3+6 = 10 = binomial(5, 2).
Triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7   8   9 10 11
0:  1
1:  1  2
2:  1  3  3
3:  1  4  6   4
4:  1  5 10  10   5
5:  1  6 15  20  15   6
6:  1  7 21  35  35  21   7
7:  1  8 28  56  70  56  28   8
8:  1  9 36  84 126 126  84  36  9
9:  1 10 45 120 210 252 210 120 45   10
10: 1 11 55 165 330 462 462 330 165  55 11
11: 1 12 66 220 495 792 924 792 495 220 66 12
... Reformatted. - _Wolfdieter Lang_, Nov 04 2014
.
Can be seen as the square array A(n, k) = binomial(n + k + 1, n) read by descending antidiagonals. A(n, k) is the number of monotone nondecreasing functions f: {1,2,..,k} -> {1,2,..,n}. - _Peter Luschny_, Aug 25 2019
[0]  1,  1,   1,   1,    1,    1,     1,     1,     1, ... A000012
[1]  2,  3,   4,   5,    6,    7,     8,     9,    10, ... A000027
[2]  3,  6,  10,  15,   21,   28,    36,    45,    55, ... A000217
[3]  4, 10,  20,  35,   56,   84,   120,   165,   220, ... A000292
[4]  5, 15,  35,  70,  126,  210,   330,   495,   715, ... A000332
[5]  6, 21,  56, 126,  252,  462,   792,  1287,  2002, ... A000389
[6]  7, 28,  84, 210,  462,  924,  1716,  3003,  5005, ... A000579
[7]  8, 36, 120, 330,  792, 1716,  3432,  6435, 11440, ... A000580
[8]  9, 45, 165, 495, 1287, 3003,  6435, 12870, 24310, ... A000581
[9] 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, ... A000582
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+1,k)))); # Muniru A Asiru, Jul 10 2018
    
  • Haskell
    a074909 n k = a074909_tabl !! n !! k
    a074909_row n = a074909_tabl !! n
    a074909_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Feb 25 2012
    
  • Magma
    /* As triangle */ [[Binomial(n+1,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2018
    
  • Maple
    A074909 := proc(n,k)
        if k > n or k < 0 then
            0;
        else
            binomial(n+1,k) ;
        end if;
    end proc: # Zerinvary Lajos, Nov 09 2006
  • Mathematica
    Flatten[Join[{1}, Table[Sum[Binomial[k, m], {k, 0, n}], {n, 0, 12}, {m, 0, n}] ]] (* or *) Flatten[Join[{1}, Table[Binomial[n, m], {n, 12}, {m, n}]]]
  • PARI
    print1(1);for(n=1,10,for(k=1,n,print1(", "binomial(n,k)))) \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from math import comb, isqrt
    def A074909(n): return comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),n-comb(r,2)) # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = Sum_{i=0..n} C(i, n-k) = C(n+1, k).
Row n has g.f. (1+x)^(n+1)-x^(n+1).
E.g.f.: ((1+x)*e^t - x) e^(x*t). The row polynomials p_n(x) satisfy dp_n(x)/dx = (n+1)*p_(n-1)(x). - Tom Copeland, Jul 10 2018
T(n, k) = T(n-1, k-1) + T(n-1, k) for k: 0Reinhard Zumkeller, Apr 18 2005
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. for column k (with leading zeros): x^(k-1)*(1/(1-x)^(k+1)-1), k >= 0. - Wolfdieter Lang, Nov 04 2014
Up(n, x+y) = (Up(.,x)+ y)^n = Sum_{k=0..n} binomial(n,k) Up(k,x)*y^(n-k), where Up(n,x) = ((x+1)^(n+1)-x^(n+1)) / (n+1) = P(n,x)/(n+1) with P(n,x) the n-th row polynomial of this entry. dUp(n,x)/dx = n * Up(n-1,x) and dP(n,x)/dx = (n+1)*P(n-1,x). - Tom Copeland, Nov 14 2014
The o.g.f. GF(x,t) = x / ((1-t*x)*(1-(1+t)x)) = x + (1+2t)*x^2 + (1+3t+3t^2)*x^3 + ... has the inverse GFinv(x,t) = (1+(1+2t)x-sqrt(1+(1+2t)*2x+x^2))/(2t(1+t)x) in x about 0, which generates the row polynomials (mod row signs) of A033282. The reciprocal of the o.g.f., i.e., x/GF(x,t), gives the free cumulants (1, -(1+2t) , t(1+t) , 0, 0, ...) associated with the moments defined by GFinv, and, in fact, these free cumulants generate these moments through the noncrossing partitions of A134264. The associated e.g.f. and relations to Grassmannians are described in A248727, whose polynomials are the basis for an Appell sequence of polynomials that are umbral compositional inverses of the Appell sequence formed from this entry's polynomials (distinct from the one described in the comments above, without the normalizing reciprocal). - Tom Copeland, Jan 07 2015
T(n, k) = (1/k!) * Sum_{i=0..k} Stirling1(k,i)*(n+1)^i, for 0<=k<=n. - Ridouane Oudra, Oct 23 2022

Extensions

I added an initial 1 at the suggestion of Paul Barry, which makes the triangle a little nicer but may mean that some of the formulas will now need adjusting. - N. J. A. Sloane, Feb 11 2003
Formula section edited, checked and corrected by Wolfdieter Lang, Nov 04 2014

A007334 Number of spanning trees in the graph K_{n}/e, which results from contracting an edge e in the complete graph K_{n} on n vertices (for n>=2).

Original entry on oeis.org

1, 2, 8, 50, 432, 4802, 65536, 1062882, 20000000, 428717762, 10319560704, 275716983698, 8099130339328, 259492675781250, 9007199254740992, 336755653118801858, 13493281232954916864, 576882827135242335362, 26214400000000000000000
Offset: 2

Views

Author

Keywords

Comments

The old name (referring to the Chen-Goyal article) was "[Number of] essential complementary partitions of [an] n-set."
This sequence was obtained using the deletion-contraction recursions satisfied by the number of spanning trees for graphs. It is readily seen that the number of spanning trees in K_{n}-e (the complete graph K_{n} with an edge e deleted) is (n-2)*(n^{n-3}). Since the number of spanning trees in K_{n} is n^{n-2}, we see that (n-2)*(n^{n-3})+f(n)=n^{n-2} by the deletion-contraction recursion. Hence it follows that f(n)=2*n^{n-3}. - N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004
With offset 0, the number of acyclic functions from {1,...,n} to {1,...,n+2}. See link below. - Dennis P. Walsh, Nov 27 2011
With offset 0, a(n) is the number of forests of rooted labeled trees on n nodes in which some (possibly all or none) of the trees have been specially designated. a(n) = Sum_{k=1..n} A061356(n,k)*2^k. E.g.f. is exp(T(x))^2 where T(x) is the e.g.f for A000169. The expected number of trees in each forest approaches 3 as n gets large. Cf. A225497. - Geoffrey Critzer, May 10 2013

Examples

			a(3)=2 because K_{3}/e consists of two vertices and two parallel edges, where each edge is a spanning tree.
		

References

  • J. Oxley, Matroid Theory, Oxford University Press, 1992.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The sequence is A058127(n, n-2) for n >= 2. - Peter Luschny, Apr 22 2009
Cf. A007830.

Programs

  • Mathematica
    nn = 17; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[Exp[ tx]^2, {x, 0, nn}], x]  (* Geoffrey Critzer, May 10 2013 *)
  • PARI
    {a(n)=if(n==2, 1, 1-polcoeff(sum(k=2, n-1, a(k)*x^k/(1+(k-1)*x+x*O(x^n))^(k-1)), n))} /* Paul D. Hanna, Jan 17 2013 */

Formula

a(n) = 2*n^{n-3} (n>=2).
E.g.f.: (-W(-x)/x)*exp(-W(-x)). - Paul Barry, Nov 19 2010 [With offset 0, and W = LambertW. Equals (W(-x)/(-x))^2 = (exp(-W(-x)))^2 (see a comment above). - Wolfdieter Lang, Nov 11 2022]
G.f.: Sum_{n>=1} a(n+1) * x^n / (1 + n*x)^n = x/(1-x). - Paul D. Hanna, Jan 17 2013

Extensions

a(6) corrected and more terms from Sean A. Irvine, Dec 19 2017
After correction, this became identical (except for the offset) with A089104, contributed by N. Eaton, W. Kook and L. Thoma (andrewk(AT)math.uri.edu), Jan 17 2004. The two entries have been merged using the older A-number. - N. J. A. Sloane, Dec 19 2017

A058128 a(1) = 1, a(n) = (n^n-n)/(n-1)^2 for n >= 2.

Original entry on oeis.org

1, 2, 6, 28, 195, 1866, 22876, 342392, 6053445, 123456790, 2853116706, 73686780564, 2103299351335, 65751519677858, 2234152501943160, 81985529216486896, 3231407272993502985, 136146740744970718254, 6106233505124424657790, 290464265927977839335180
Offset: 1

Views

Author

Dennis P. Walsh, Nov 14 2000

Keywords

Comments

Number of acyclic-function digraphs on n vertices. An acyclic-function digraph is a labeled digraph which (i) has no cycles and no loops, (ii) has outdegree 0 or 1 for all vertices and (iii) has x > y when vertex x has outdegree 0 and vertex y has outdegree 1.
This sequence is the sum of antidiagonals of A058127.
Conjecture: For even n, a(n) is prime or a weak Fermat pseudoprime to base n. - Davide Rotondo, Nov 06 2024

Examples

			a(3) = 6 since the acyclic-function digraphs on 3 vertices are: {(1), (2), (3)} {(1,2), (3)} {(1,3), (2)} {(1,2), (2,3)} {(1,3), (2,3)} {(2,1), (1,3)} where (x) denotes a vertex of degree 0 and (x,y) denotes the subgraph consisting of vertices x and y and the arc from x to y.
		

Crossrefs

Cf. A058127.

Programs

  • Mathematica
    Join[{1},Table[(n^n-n)/(n-1)^2,{n,2,20}]] (* Harvey P. Dale, Jul 17 2011 *)

Formula

a(n) = Sum_{k=1..n} k*n^(n-k-1). - Benoit Cloitre, Sep 28 2002

A217701 Permanent of the n X n matrix with all diagonal entries n and all off diagonal entries 1.

Original entry on oeis.org

1, 1, 5, 38, 393, 5144, 81445, 1512720, 32237681, 775193984, 20759213061, 612623724800, 19751688891385, 690721009155072, 26039042401938917, 1052645311044368384, 45424010394042998625, 2083972769418997760000, 101288683106200561501189, 5199006109868903819575296
Offset: 0

Views

Author

Jim Pitman, Mar 19 2013

Keywords

Comments

a(n) is the number of terms that appear before cancellations occur in the evaluation of the determinant of an n X n matrix by the usual sum over permutations of [n], for a matrix whose off diagonal entries are specified, and each of whose diagonal entries is minus the sum of the negatives of the off diagonal entries and one additional term, as in the usual presentation of the matrix in the Matrix Tree Theorem.
The number a(n-1) - n^(n-2) (A000272) is the number of terms which cancel in Zeilberger's proof of the Matrix Tree Theorem. This number is even, as the terms which cancel are equal in magnitude with opposite sign, and as is also apparent from the formula in terms of A087981(n) which is a corollary of Zeilberger's proof.
Formula involves the derangement numbers A000166 which count permutations with no fixed points, also the number A087981 of colored permutations with no fixed points of n elements where each cycle is one of two colors.
Number of permutations of [n] where the fixed points are n-colored and all other points are unicolored. - Alois P. Heinz, Apr 23 2020

Crossrefs

Also closely related to A058127.
Main diagonal of A089258.
Cf. A176043.

Programs

  • Maple
    a:= n-> n!*coeff(series(exp((n-1)*x)/(1-x), x, n+1), x, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 23 2020
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n<1, 1-n,
          (n+k-1)*b(n-1, k)+(k-1)*(1-n)*b(n-2, k))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 23 2020
    # third Maple program:
    b:= proc(n, k) option remember;
          `if`(min(n, k)<0, 0, n*b(n-1, k)+(k-1)^n)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Apr 23 2020
  • Mathematica
    derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,k] derange[n-k,1] n^k, {k,0,n}] ; a/@ Range[0,10]
    derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,j] derange[n-j,2] (n+1)^(j-1) (n-j+1), {j,0,n}]; a/@ Range[0,10]
    (* Alternative: *)
    a[n_] := Exp[n - 1] Gamma[n + 1, n - 1];
    Table[a[n], {n, 0, 19}]  (* Peter Luschny, Dec 24 2021 *)

Formula

a(n) = Sum_{k=0..n} C(n,k)*D_{n-k}*n^k, where D_n = A000166(n).
a(n) = Sum_{j=0..n} C(n,k)*D_{n-k,2} (n+1)^(j-1) (n-j+1) where D_{n,2} = A087981(n).
a(n) = n! * [x^n] exp((k-1)*x)/(1-x). - Alois P. Heinz, Apr 23 2020
a(n) = exp(n-1)*Gamma(n+1, n-1). - Peter Luschny, Dec 24 2021

Extensions

a(0),a(16)-a(19) from Alois P. Heinz, Apr 23 2020

A379168 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A140049.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 12, 55, 0, 1, 4, 21, 140, 1005, 0, 1, 5, 32, 261, 2600, 26601, 0, 1, 6, 45, 424, 4965, 68752, 941863, 0, 1, 7, 60, 635, 8304, 132003, 2414188, 42372177, 0, 1, 8, 77, 900, 12845, 223104, 4617675, 107385896, 2336926665, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2025

Keywords

Examples

			Square array begins:
  1,      1,       1,       1,       1,        1,        1, ...
  0,      1,       2,       3,       4,        5,        6, ...
  0,      5,      12,      21,      32,       45,       60, ...
  0,     55,     140,     261,     424,      635,      900, ...
  0,   1005,    2600,    4965,    8304,    12845,    18840, ...
  0,  26601,   68752,  132003,  223104,   350125,   522576, ...
  0, 941863, 2414188, 4617675, 7806424, 12296935, 18477828, ...
		

Crossrefs

Columns k=0..1 give A000007, A140049.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A140049.

A384718 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A052750.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 12, 49, 0, 1, 4, 21, 128, 729, 0, 1, 5, 32, 243, 2000, 14641, 0, 1, 6, 45, 400, 3993, 41472, 371293, 0, 1, 7, 60, 605, 6912, 85683, 1075648, 11390625, 0, 1, 8, 77, 864, 10985, 153664, 2278125, 33554432, 410338673, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 08 2025

Keywords

Examples

			Square array begins:
  1,     1,     1,     1,      1,      1, ...
  0,     1,     2,     3,      4,      5, ...
  0,     5,    12,    21,     32,     45, ...
  0,    49,   128,   243,    400,    605, ...
  0,   729,  2000,  3993,   6912,  10985, ...
  0, 14641, 41472, 85683, 153664, 253125, ...
		

Crossrefs

Columns k=0..2 give A000007, A052750, A097629(n+1).

Programs

  • PARI
    a(n, k) = if(n==0, 1, k*(2*n+k)^(n-1));

Formula

A(n,k) = k * (2*n+k)^(n-1) for n > 0.

A384860 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384856.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 16, 28, 0, 1, 4, 27, 98, -107, 0, 1, 5, 40, 216, 304, -11744, 0, 1, 6, 55, 388, 1485, -20638, -519101, 0, 1, 7, 72, 620, 3712, -20592, -1185920, -12366080, 0, 1, 8, 91, 918, 7285, -3836, -1908657, -35662030, -101065751, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,     1,     1, ...
  0,      1,      2,      3,     4,     5, ...
  0,      7,     16,     27,    40,    55, ...
  0,     28,     98,    216,   388,   620, ...
  0,   -107,    304,   1485,  3712,  7285, ...
  0, -11744, -20638, -20592, -3836, 39200, ...
		

Crossrefs

Columns k=0..1 give A000007, A384856.

Programs

  • PARI
    b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-2*n+2*j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j)));
    a(n, k) = b(n, -k);

Formula

Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-2*n+2*j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k).

A117297 Triangle read by rows generated from the Narayana transform.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 11, 37, 1, 4, 21, 122, 621, 1, 5, 34, 273, 2302, 16526, 1, 6, 50, 508, 2763, 66482, 640207
Offset: 1

Views

Author

Gary W. Adamson, Apr 23 2006

Keywords

Comments

The operation used in generating the triangle is analogous to the binomial transform operation used in generating triangle A058127.

Examples

			4th row = (1, 3, 11, 37), the first four terms of M * V = (1, 3, 11, 37, 101, 231, 463, ...); where M = the Narayana triangle as an infinitely lower triangular matrix and V = the Vector formed by row 3: [1, 2, 4, 0, 0, 0, ...].
First few rows of the triangle:
  1;
  1, 1;
  1, 2,  4;
  1, 3, 11,  37;
  1, 4, 21, 122,  621;
  1, 5, 34, 273, 2302, 16526;
  ...
		

Crossrefs

Formula

Let a(1) = 1, then n-th row is generated by performing the operation (M * V) on the (n-1)-th row and extracting the first n terms. M = the Narayana triangle of A001263 considered as a transform. V = the (n-1)-th row of the triangle as a Vector, V; followed by zeros: [a, b, c, 0, 0, 0, ...].
Showing 1-9 of 9 results.