cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A379599 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A088714.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 13, 0, 1, 4, 12, 32, 69, 0, 1, 5, 18, 58, 173, 419, 0, 1, 6, 25, 92, 321, 1054, 2809, 0, 1, 7, 33, 135, 523, 1971, 7039, 20353, 0, 1, 8, 42, 188, 790, 3248, 13158, 50632, 157199, 0, 1, 9, 52, 252, 1134, 4976, 21740, 94194, 387613, 1281993, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2025

Keywords

Examples

			Square array begins:
  1,    1,    1,     1,     1,     1,     1, ...
  0,    1,    2,     3,     4,     5,     6, ...
  0,    3,    7,    12,    18,    25,    33, ...
  0,   13,   32,    58,    92,   135,   188, ...
  0,   69,  173,   321,   523,   790,  1134, ...
  0,  419, 1054,  1971,  3248,  4976,  7260, ...
  0, 2809, 7039, 13158, 21740, 33480, 49210, ...
		

Crossrefs

Columns k=0..1 give A000007, A088714.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, j)));

Formula

See A088714.

A380178 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A162659.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 22, 0, 1, 4, 15, 62, 281, 0, 1, 5, 24, 126, 792, 5396, 0, 1, 6, 35, 220, 1641, 14922, 142297, 0, 1, 7, 48, 350, 2960, 30708, 384316, 4865806, 0, 1, 8, 63, 522, 4905, 55604, 777537, 12836406, 207407489, 0, 1, 9, 80, 742, 7656, 93300, 1393720, 25450806, 535396784, 10710044776, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 11 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,       1,       1,       1, ...
  0,      1,      2,      3,       4,       5,       6, ...
  0,      3,      8,     15,      24,      35,      48, ...
  0,     22,     62,    126,     220,     350,     522, ...
  0,    281,    792,   1641,    2960,    4905,    7656, ...
  0,   5396,  14922,  30708,   55604,   93300,  148446, ...
  0, 142297, 384316, 777537, 1393720, 2330305, 3716532, ...
		

Crossrefs

Columns k=0..1 give A000007, A162659.
Cf. A379168.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n-j+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

See A162659.

A384761 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384760.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 4, 5, 0, 1, -4, 9, 4, -35, 0, 1, -5, 16, -9, -104, -281, 0, 1, -6, 25, -40, -171, -112, 5671, 0, 1, -7, 36, -95, -176, 717, 14164, 42671, 0, 1, -8, 49, -180, -35, 2176, 20619, -18104, -2179127, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 09 2025

Keywords

Examples

			Square array begins:
  1,    1,    1,    1,    1,    1, ...
  0,   -1,   -2,   -3,   -4,   -5, ...
  0,    1,    4,    9,   16,   25, ...
  0,    5,    4,   -9,  -40,  -95, ...
  0,  -35, -104, -171, -176,  -35, ...
  0, -281, -112,  717, 2176, 3875, ...
		

Crossrefs

Columns k=0..1 give A000007, A384760.
Cf. A379168.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, (-1)^n*k*sum(j=0, n, (n+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

A(n,0) = 0^n; A(n,k) = (-1)^n * k * Sum_{j=0..n} (n+k)^(j-1) * binomial(n,j) * A(n-j,j).

A384690 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384689.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 16, 106, 0, 1, 4, 27, 254, 2593, 0, 1, 5, 40, 450, 6328, 89796, 0, 1, 6, 55, 700, 11457, 220362, 4085029, 0, 1, 7, 72, 1010, 18256, 402468, 10016860, 232694806, 0, 1, 8, 91, 1386, 27025, 648564, 18326853, 568220102, 16053415249, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 07 2025

Keywords

Examples

			Square array begins:
  1,     1,      1,      1,      1,      1, ...
  0,     1,      2,      3,      4,      5, ...
  0,     7,     16,     27,     40,     55, ...
  0,   106,    254,    450,    700,   1010, ...
  0,  2593,   6328,  11457,  18256,  27025, ...
  0, 89796, 220362, 402468, 648564, 972900, ...
		

Crossrefs

Columns k=0..1 give A000007, A384689.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, (n+j+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} (n+j+k)^(j-1) * binomial(n,j) * A(n-j,j).

A384788 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384787.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 16, 148, 0, 1, 4, 27, 338, 7381, 0, 1, 5, 40, 576, 16240, 801536, 0, 1, 6, 55, 868, 26829, 1697602, 186678019, 0, 1, 7, 72, 1220, 39424, 2701488, 384962560, 93865986880, 0, 1, 8, 91, 1638, 54325, 3828164, 595921743, 190657584770, 102755888482153, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Examples

			Square array begins:
  1,      1,       1,       1,       1,       1, ...
  0,      1,       2,       3,       4,       5, ...
  0,      7,      16,      27,      40,      55, ...
  0,    148,     338,     576,     868,    1220, ...
  0,   7381,   16240,   26829,   39424,   54325, ...
  0, 801536, 1697602, 2701488, 3828164, 5094400, ...
		

Crossrefs

Columns k=0..1 give A000007, A384787.
Cf. A379168.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, 2^(n-j)*(n+k)^(j-1)*binomial(n, j)*a(n-j, j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} 2^(n-j) * (n+k)^(j-1) * binomial(n,j) * A(n-j,j).
Showing 1-5 of 5 results.