A379598
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A110447.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 6, 0, 1, 4, 9, 16, 23, 0, 1, 5, 14, 31, 62, 104, 0, 1, 6, 20, 52, 123, 278, 531, 0, 1, 7, 27, 80, 213, 552, 1398, 2982, 0, 1, 8, 35, 116, 340, 964, 2750, 7718, 18109, 0, 1, 9, 44, 161, 513, 1561, 4784, 14976, 46083, 117545, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 6, 16, 31, 52, 80, 116, ...
0, 23, 62, 123, 213, 340, 513, ...
0, 104, 278, 552, 964, 1561, 2400, ...
0, 531, 1398, 2750, 4784, 7755, 11987, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+k, j)/(n+k)*a(n-j, j)));
A381594
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381601.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 15, 79, 0, 1, 4, 24, 172, 1134, 0, 1, 5, 34, 280, 2475, 18953, 0, 1, 6, 45, 404, 4044, 41280, 353134, 0, 1, 7, 57, 545, 5863, 67365, 766291, 7154751, 0, 1, 8, 70, 704, 7955, 97620, 1246534, 15460284, 155181240, 0, 1, 9, 84, 882, 10344, 132486, 1801536, 25051422, 333896388, 3565276582, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 7, 15, 24, 34, 45, 57, ...
0, 79, 172, 280, 404, 545, 704, ...
0, 1134, 2475, 4044, 5863, 7955, 10344, ...
0, 18953, 41280, 67365, 97620, 132486, 172434, ...
0, 353134, 766291, 1246534, 1801536, 2439615, 3169770, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+j+k, j)/(3*n+j+k)*a(n-j, 3*j)));
A384623
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384622.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 15, 75, 0, 1, 4, 24, 164, 989, 0, 1, 5, 34, 268, 2177, 14822, 0, 1, 6, 45, 388, 3585, 32672, 242833, 0, 1, 7, 57, 525, 5235, 53922, 534781, 4253818, 0, 1, 8, 70, 680, 7150, 78972, 882304, 9349160, 78573475, 0, 1, 9, 84, 854, 9354, 108251, 1292456, 15399930, 172255669, 1516124048, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 7, 15, 24, 34, 45, 57, ...
0, 75, 164, 268, 388, 525, 680, ...
0, 989, 2177, 3585, 5235, 7150, 9354, ...
0, 14822, 32672, 53922, 78972, 108251, 142218, ...
0, 242833, 534781, 882304, 1292456, 1772920, 2332044, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 5*j)));
A381592
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381600.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 39, 0, 1, 4, 18, 88, 383, 0, 1, 5, 26, 148, 869, 4360, 0, 1, 6, 35, 220, 1473, 9876, 55201, 0, 1, 7, 45, 305, 2211, 16740, 124473, 758877, 0, 1, 8, 56, 404, 3100, 25164, 210260, 1701630, 11157081, 0, 1, 9, 68, 518, 4158, 35381, 315312, 2860317, 24870695, 173623407, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 5, 11, 18, 26, 35, 45, ...
0, 39, 88, 148, 220, 305, 404, ...
0, 383, 869, 1473, 2211, 3100, 4158, ...
0, 4360, 9876, 16740, 25164, 35381, 47646, ...
0, 55201, 124473, 210260, 315312, 442710, 595892, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+j+k, j)/(2*n+j+k)*a(n-j, 2*j)));
A384619
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213591.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 24, 0, 1, 4, 15, 56, 178, 0, 1, 5, 22, 97, 420, 1512, 0, 1, 6, 30, 148, 738, 3572, 14152, 0, 1, 7, 39, 210, 1145, 6300, 33328, 142705, 0, 1, 8, 49, 284, 1655, 9832, 58702, 334354, 1528212, 0, 1, 9, 60, 371, 2283, 14321, 91640, 586635, 3559310, 17211564, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 24, 56, 97, 148, 210, 284, ...
0, 178, 420, 738, 1145, 1655, 2283, ...
0, 1512, 3572, 6300, 9832, 14321, 19938, ...
0, 14152, 33328, 58702, 91640, 133720, 186753, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 2*j)));
A384620
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213639.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 38, 0, 1, 4, 18, 86, 357, 0, 1, 5, 26, 145, 815, 3832, 0, 1, 6, 35, 216, 1389, 8758, 45189, 0, 1, 7, 45, 300, 2095, 14967, 103056, 572378, 0, 1, 8, 56, 398, 2950, 22668, 175937, 1300586, 7676653, 0, 1, 9, 68, 511, 3972, 32091, 266470, 2214012, 17368633, 107971691, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 5, 11, 18, 26, 35, 45, ...
0, 38, 86, 145, 216, 300, 398, ...
0, 357, 815, 1389, 2095, 2950, 3972, ...
0, 3832, 8758, 14967, 22668, 32091, 43488, ...
0, 45189, 103056, 175937, 266470, 377620, 512705, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 3*j)));
A384621
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A376176.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 55, 0, 1, 4, 21, 122, 622, 0, 1, 5, 30, 202, 1390, 8015, 0, 1, 6, 40, 296, 2322, 17934, 113164, 0, 1, 7, 51, 405, 3437, 30030, 252847, 1711898, 0, 1, 8, 63, 530, 4755, 44600, 423111, 3814724, 27357970, 0, 1, 9, 76, 672, 6297, 61966, 628454, 6369930, 60766238, 457507917, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 6, 13, 21, 30, 40, 51, ...
0, 55, 122, 202, 296, 405, 530, ...
0, 622, 1390, 2322, 3437, 4755, 6297, ...
0, 8015, 17934, 30030, 44600, 61966, 82476, ...
0, 113164, 252847, 423111, 628454, 873840, 1164730, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 4*j)));
Showing 1-7 of 7 results.