cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A379598 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A110447.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 6, 0, 1, 4, 9, 16, 23, 0, 1, 5, 14, 31, 62, 104, 0, 1, 6, 20, 52, 123, 278, 531, 0, 1, 7, 27, 80, 213, 552, 1398, 2982, 0, 1, 8, 35, 116, 340, 964, 2750, 7718, 18109, 0, 1, 9, 44, 161, 513, 1561, 4784, 14976, 46083, 117545, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 27 2025

Keywords

Examples

			Square array begins:
  1,   1,    1,    1,    1,    1,     1, ...
  0,   1,    2,    3,    4,    5,     6, ...
  0,   2,    5,    9,   14,   20,    27, ...
  0,   6,   16,   31,   52,   80,   116, ...
  0,  23,   62,  123,  213,  340,   513, ...
  0, 104,  278,  552,  964, 1561,  2400, ...
  0, 531, 1398, 2750, 4784, 7755, 11987, ...
		

Crossrefs

Columns k=0..1 give A000007, A110447 (A030266(n+1)).

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+k, j)/(n+k)*a(n-j, j)));

Formula

See A030266.

A381594 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381601.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 15, 79, 0, 1, 4, 24, 172, 1134, 0, 1, 5, 34, 280, 2475, 18953, 0, 1, 6, 45, 404, 4044, 41280, 353134, 0, 1, 7, 57, 545, 5863, 67365, 766291, 7154751, 0, 1, 8, 70, 704, 7955, 97620, 1246534, 15460284, 155181240, 0, 1, 9, 84, 882, 10344, 132486, 1801536, 25051422, 333896388, 3565276582, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,       1,       1,       1,       1, ...
  0,      1,      2,       3,       4,       5,       6, ...
  0,      7,     15,      24,      34,      45,      57, ...
  0,     79,    172,     280,     404,     545,     704, ...
  0,   1134,   2475,    4044,    5863,    7955,   10344, ...
  0,  18953,  41280,   67365,   97620,  132486,  172434, ...
  0, 353134, 766291, 1246534, 1801536, 2439615, 3169770, ...
		

Crossrefs

Columns k=0..1 give A000007, A381601.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+j+k, j)/(3*n+j+k)*a(n-j, 3*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(3*n+j+k,j)/(3*n+j+k) * A(n-j,3*j).

A384623 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384622.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 7, 0, 1, 3, 15, 75, 0, 1, 4, 24, 164, 989, 0, 1, 5, 34, 268, 2177, 14822, 0, 1, 6, 45, 388, 3585, 32672, 242833, 0, 1, 7, 57, 525, 5235, 53922, 534781, 4253818, 0, 1, 8, 70, 680, 7150, 78972, 882304, 9349160, 78573475, 0, 1, 9, 84, 854, 9354, 108251, 1292456, 15399930, 172255669, 1516124048, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 05 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,       1,       1,       1, ...
  0,      1,      2,      3,       4,       5,       6, ...
  0,      7,     15,     24,      34,      45,      57, ...
  0,     75,    164,    268,     388,     525,     680, ...
  0,    989,   2177,   3585,    5235,    7150,    9354, ...
  0,  14822,  32672,  53922,   78972,  108251,  142218, ...
  0, 242833, 534781, 882304, 1292456, 1772920, 2332044, ...
		

Crossrefs

Columns k=0..1 give A000007, A384622.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 5*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * A(n-j,5*j).

A381592 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381600.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 39, 0, 1, 4, 18, 88, 383, 0, 1, 5, 26, 148, 869, 4360, 0, 1, 6, 35, 220, 1473, 9876, 55201, 0, 1, 7, 45, 305, 2211, 16740, 124473, 758877, 0, 1, 8, 56, 404, 3100, 25164, 210260, 1701630, 11157081, 0, 1, 9, 68, 518, 4158, 35381, 315312, 2860317, 24870695, 173623407, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,     1,      1,      1,      1,      1,      1, ...
  0,     1,      2,      3,      4,      5,      6, ...
  0,     5,     11,     18,     26,     35,     45, ...
  0,    39,     88,    148,    220,    305,    404, ...
  0,   383,    869,   1473,   2211,   3100,   4158, ...
  0,  4360,   9876,  16740,  25164,  35381,  47646, ...
  0, 55201, 124473, 210260, 315312, 442710, 595892, ...
		

Crossrefs

Columns k=0..2 give A000007, A381600, A381593.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+j+k, j)/(2*n+j+k)*a(n-j, 2*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(2*n+j+k,j)/(2*n+j+k) * A(n-j,2*j).

A384619 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213591.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 24, 0, 1, 4, 15, 56, 178, 0, 1, 5, 22, 97, 420, 1512, 0, 1, 6, 30, 148, 738, 3572, 14152, 0, 1, 7, 39, 210, 1145, 6300, 33328, 142705, 0, 1, 8, 49, 284, 1655, 9832, 58702, 334354, 1528212, 0, 1, 9, 60, 371, 2283, 14321, 91640, 586635, 3559310, 17211564, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 04 2025

Keywords

Examples

			Square array begins:
  1,     1,     1,     1,     1,      1,      1, ...
  0,     1,     2,     3,     4,      5,      6, ...
  0,     4,     9,    15,    22,     30,     39, ...
  0,    24,    56,    97,   148,    210,    284, ...
  0,   178,   420,   738,  1145,   1655,   2283, ...
  0,  1512,  3572,  6300,  9832,  14321,  19938, ...
  0, 14152, 33328, 58702, 91640, 133720, 186753, ...
		

Crossrefs

Columns k=0..1 give A000007, A213591(n+1).

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 2*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * A(n-j,2*j).

A384620 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A213639.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 38, 0, 1, 4, 18, 86, 357, 0, 1, 5, 26, 145, 815, 3832, 0, 1, 6, 35, 216, 1389, 8758, 45189, 0, 1, 7, 45, 300, 2095, 14967, 103056, 572378, 0, 1, 8, 56, 398, 2950, 22668, 175937, 1300586, 7676653, 0, 1, 9, 68, 511, 3972, 32091, 266470, 2214012, 17368633, 107971691, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 05 2025

Keywords

Examples

			Square array begins:
  1,     1,      1,      1,      1,      1,      1, ...
  0,     1,      2,      3,      4,      5,      6, ...
  0,     5,     11,     18,     26,     35,     45, ...
  0,    38,     86,    145,    216,    300,    398, ...
  0,   357,    815,   1389,   2095,   2950,   3972, ...
  0,  3832,   8758,  14967,  22668,  32091,  43488, ...
  0, 45189, 103056, 175937, 266470, 377620, 512705, ...
		

Crossrefs

Columns k=0..1 give A000007, A213639(n+1).

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 3*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * A(n-j,3*j).

A384621 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of (B(x)/x)^k, where B(x) is the g.f. of A376176.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 55, 0, 1, 4, 21, 122, 622, 0, 1, 5, 30, 202, 1390, 8015, 0, 1, 6, 40, 296, 2322, 17934, 113164, 0, 1, 7, 51, 405, 3437, 30030, 252847, 1711898, 0, 1, 8, 63, 530, 4755, 44600, 423111, 3814724, 27357970, 0, 1, 9, 76, 672, 6297, 61966, 628454, 6369930, 60766238, 457507917, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 05 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,      1,      1,       1, ...
  0,      1,      2,      3,      4,      5,       6, ...
  0,      6,     13,     21,     30,     40,      51, ...
  0,     55,    122,    202,    296,    405,     530, ...
  0,    622,   1390,   2322,   3437,   4755,    6297, ...
  0,   8015,  17934,  30030,  44600,  61966,   82476, ...
  0, 113164, 252847, 423111, 628454, 873840, 1164730, ...
		

Crossrefs

Columns k=0..1 give A000007, A376176(n+1).

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, 4*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(n+j+k,j)/(n+j+k) * A(n-j,4*j).
Showing 1-7 of 7 results.