A379599
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A088714.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 13, 0, 1, 4, 12, 32, 69, 0, 1, 5, 18, 58, 173, 419, 0, 1, 6, 25, 92, 321, 1054, 2809, 0, 1, 7, 33, 135, 523, 1971, 7039, 20353, 0, 1, 8, 42, 188, 790, 3248, 13158, 50632, 157199, 0, 1, 9, 52, 252, 1134, 4976, 21740, 94194, 387613, 1281993, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 7, 12, 18, 25, 33, ...
0, 13, 32, 58, 92, 135, 188, ...
0, 69, 173, 321, 523, 790, 1134, ...
0, 419, 1054, 1971, 3248, 4976, 7260, ...
0, 2809, 7039, 13158, 21740, 33480, 49210, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n+j+k, j)/(n+j+k)*a(n-j, j)));
A381566
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A087949.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 2, 0, 1, 4, 6, 6, 5, 0, 1, 5, 10, 13, 15, 16, 0, 1, 6, 15, 24, 33, 46, 59, 0, 1, 7, 21, 40, 63, 99, 164, 246, 0, 1, 8, 28, 62, 110, 188, 343, 662, 1131, 0, 1, 9, 36, 91, 180, 331, 638, 1344, 2961, 5655, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 1, 3, 6, 10, 15, 21, ...
0, 2, 6, 13, 24, 40, 62, ...
0, 5, 15, 33, 63, 110, 180, ...
0, 16, 46, 99, 188, 331, 552, ...
0, 59, 164, 343, 638, 1110, 1845, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(n-j+k, j)/(n-j+k)*a(n-j, j)));
A384652
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384145.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 8, 0, 1, 4, 9, 20, 44, 0, 1, 5, 14, 37, 108, 298, 0, 1, 6, 20, 60, 198, 716, 2359, 0, 1, 7, 27, 90, 321, 1290, 5554, 21112, 0, 1, 8, 35, 128, 485, 2064, 9821, 48838, 209175, 0, 1, 9, 44, 175, 699, 3091, 15452, 84888, 476714, 2262121, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 8, 20, 37, 60, 90, 128, ...
0, 44, 108, 198, 321, 485, 699, ...
0, 298, 716, 1290, 2064, 3091, 4434, ...
0, 2359, 5554, 9821, 15452, 22805, 32315, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-2*j+k, j)/(3*n-2*j+k)*a(n-j, j)));
A384653
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384649.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 9, 0, 1, 4, 9, 22, 56, 0, 1, 5, 14, 40, 134, 432, 0, 1, 6, 20, 64, 240, 1012, 3935, 0, 1, 7, 27, 95, 381, 1779, 9039, 40820, 0, 1, 8, 35, 134, 565, 2780, 15596, 92246, 471633, 0, 1, 9, 44, 182, 801, 4071, 23950, 156597, 1051558, 5980210, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 9, 22, 40, 64, 95, 134, ...
0, 56, 134, 240, 381, 565, 801, ...
0, 432, 1012, 1779, 2780, 4071, 5718, ...
0, 3935, 9039, 15596, 23950, 34515, 47786, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(4*n-3*j+k, j)/(4*n-3*j+k)*a(n-j, j)));
A384654
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A384650.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 10, 0, 1, 4, 9, 24, 69, 0, 1, 5, 14, 43, 162, 592, 0, 1, 6, 20, 68, 285, 1362, 6052, 0, 1, 7, 27, 100, 445, 2352, 13664, 70870, 0, 1, 8, 35, 140, 650, 3612, 23171, 157592, 928497, 0, 1, 9, 44, 189, 909, 5201, 34972, 263190, 2039543, 13404514, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 10, 24, 43, 68, 100, 140, ...
0, 69, 162, 285, 445, 650, 909, ...
0, 592, 1362, 2352, 3612, 5201, 7188, ...
0, 6052, 13664, 23171, 34972 ,49540, 67433, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(5*n-4*j+k, j)/(5*n-4*j+k)*a(n-j, j)));
A381571
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381572.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 7, 0, 1, 6, 18, 38, 0, 1, 8, 33, 104, 267, 0, 1, 10, 52, 206, 735, 2232, 0, 1, 12, 75, 352, 1488, 6064, 21200, 0, 1, 14, 102, 550, 2626, 12246, 56510, 222556, 0, 1, 16, 133, 808, 4265, 21752, 112669, 581452, 2536661, 0, 1, 18, 168, 1134, 6537, 35812, 198808, 1140150, 6501267, 31010886, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 7, 18, 33, 52, 75, 102, ...
0, 38, 104, 206, 352, 550, 808, ...
0, 267, 735, 1488, 2626, 4265, 6537, ...
0, 2232, 6064, 12246, 21752, 35812, 55944, ...
0, 21200, 56510, 112669, 198808, 327010, 512934, ...
-
a(n, k) = if(k==0, 0^n, 2*k*sum(j=0, n, binomial(2*n-j+2*k, j)/(2*n-j+2*k)*a(n-j, j)));
A381573
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381574.
Original entry on oeis.org
1, 1, 0, 1, 3, 0, 1, 6, 15, 0, 1, 9, 39, 118, 0, 1, 12, 72, 326, 1206, 0, 1, 15, 114, 651, 3345, 14712, 0, 1, 18, 165, 1120, 6822, 40200, 204385, 0, 1, 21, 225, 1760, 12123, 81675, 547146, 3143826, 0, 1, 24, 294, 2598, 19815, 145968, 1096080, 8239938, 52580328, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 3, 6, 9, 12, 15, ...
0, 15, 39, 72, 114, 165, ...
0, 118, 326, 651, 1120, 1760, ...
0, 1206, 3345, 6822, 12123, 19815, ...
0, 14712, 40200, 81675, 145968, 241773, ...
-
a(n, k) = if(k==0, 0^n, 3*k*sum(j=0, n, binomial(3*n-2*j+3*k, j)/(3*n-2*j+3*k)*a(n-j, j)));
A381602
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120971.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 26, 0, 1, 4, 15, 60, 218, 0, 1, 5, 22, 103, 504, 2151, 0, 1, 6, 30, 156, 870, 4946, 23854, 0, 1, 7, 39, 220, 1329, 8511, 54430, 289555, 0, 1, 8, 49, 296, 1895, 12988, 93070, 655362, 3783568, 0, 1, 9, 60, 385, 2583, 18536, 141316, 1112382, 8496454, 52624689, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 4, 9, 15, 22, 30, 39, ...
0, 26, 60, 103, 156, 220, 296, ...
0, 218, 504, 870, 1329, 1895, 2583, ...
0, 2151, 4946, 8511, 12988, 18536, 25332, ...
0, 23854, 54430, 93070, 141316, 200930, 273915, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j)));
A381603
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120973.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 60, 0, 1, 4, 21, 132, 776, 0, 1, 5, 30, 217, 1708, 11802, 0, 1, 6, 40, 316, 2814, 25876, 201465, 0, 1, 7, 51, 430, 4113, 42510, 439446, 3759100, 0, 1, 8, 63, 560, 5625, 62016, 718647, 8155874, 75404151, 0, 1, 9, 76, 707, 7371, 84731, 1044228, 13270944, 162762498, 1608036861, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 6, 13, 21, 30, 40, 51, ...
0, 60, 132, 217, 316, 430, 560, ...
0, 776, 1708, 2814, 4113, 5625, 7371, ...
0, 11802, 25876, 42510, 62016, 84731, 111018, ...
0, 201465, 439446, 718647, 1044228, 1421835, 1857631, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*a(n-j, 3*j)));
A384651
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A162661.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 7, 0, 1, 4, 9, 18, 33, 0, 1, 5, 14, 34, 84, 189, 0, 1, 6, 20, 56, 159, 472, 1249, 0, 1, 7, 27, 85, 265, 882, 3057, 9237, 0, 1, 8, 35, 122, 410, 1460, 5615, 22190, 74972, 0, 1, 9, 44, 168, 603, 2256, 9166, 40053, 177149, 659042, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 2, 5, 9, 14, 20, 27, ...
0, 7, 18, 34, 56, 85, 122, ...
0, 33, 84, 159, 265, 410, 603, ...
0, 189, 472, 882, 1460, 2256, 3330, ...
0, 1249, 3057, 5615, 9166, 14015, 20540, ...
-
a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n-j+k, j)/(2*n-j+k)*a(n-j, j)));
Showing 1-10 of 11 results.