cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120972 G.f. A(x) satisfies A(x/A(x)^3) = 1 + x ; thus A(x) = 1 + series_reversion(x/A(x)^3).

Original entry on oeis.org

1, 1, 3, 21, 217, 2814, 42510, 718647, 13270944, 263532276, 5567092665, 124143735663, 2905528740060, 71058906460091, 1809695198254281, 47861102278428198, 1311488806252697283, 37164457324943708739, 1087356593493807164289, 32801308084353988297404
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Comments

More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
Related expansions.
A(x)^3 = 1 + 3*x + 12*x^2 + 82*x^3 + 813*x^4 + 10212*x^5 + 150699*x^6 +...
A(A(x)-1) = 1 + x + 6*x^2 + 60*x^3 + 776*x^4 + 11802*x^5 + 201465*x^6 +...
A(A(x)-1)^3 = 1 + 3*x + 21*x^2 + 217*x^3 + 2814*x^4 + 42510*x^5 +...
x/A(x)^3 = x - 3*x^2 - 3*x^3 - 37*x^4 - 420*x^5 - 5823*x^6 -...
Series_Reversion(x/A(x)^3) = x + 3*x^2 + 21*x^3 + 217*x^4 + 2814*x^5 + 42510*x^6 +...
To illustrate the formula a(n) = [x^(n-1)] 3*A(x)^(3*n)/(3*n),
form a table of coefficients in A(x)^(3*n) as follows:
  A^3:  [(1), 3,  12,   82,    813,   10212,   150699,   2503233, ...];
  A^6:  [ 1, (6), 33,  236,   2262,   27270,   388906,   6289080, ...];
  A^9:  [ 1,  9, (63), 489,   4671,   54684,   756012,  11904813, ...];
  A^12: [ 1, 12, 102, (868),  8445,   97260,  1310040,  20112516, ...];
  A^15: [ 1, 15, 150, 1400, (14070), 161343,  2130505,  31961175, ...];
  A^18: [ 1, 18, 207, 2112,  22113, (255060), 3324003,  48876264, ...];
  A^21: [ 1, 21, 273, 3031,  33222,  388563, (5030529), 72769014, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[3/3*(1), 3/6*(6), 3/9*(63), 3/12*(868), 3/15*(14070), 3/18*(255060), ...].
		

Crossrefs

Programs

  • Mathematica
    terms = 18; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^3 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^3))[ #A]);A[n+1]}
    
  • PARI
    {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x*subst(A^3,x,A-1+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    /* This sequence is generated when k=3, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */
    {a(n, k=3, m=0)=local(A=sum(i=0, n-1, a(i, k, m)*x^i)); if(n==0, 1, polcoeff((m+k)/(m+k*n)*A^(m+k*n), n-1))}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*b(n-j, 3*j)));
    a(n) = if(n==0, 1, b(n-1, 3)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^3.
a(n) = [x^(n-1)] A(x)^(3*n)/n for n>=1 with a(0)=1; i.e., a(n) equals the coefficient of x^(n-1) in A(x)^(3*n)/n for n>=1 (see comment).
Let B(x) be the g.f. of A120973, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^3),
(c) A(x) = B(x/A(x)^3),
(d) A(x) = 1 + x*B(x)^3,
(e) B(x) = 1 + x*B(x)^3*B(A(x)-1)^3,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^3).
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120973.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(3*n+k,j)/(3*n+k) * b(n-j,3*j).
a(n) = b(n-1,3) for n > 0. (End)

A381602 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120971.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 4, 0, 1, 3, 9, 26, 0, 1, 4, 15, 60, 218, 0, 1, 5, 22, 103, 504, 2151, 0, 1, 6, 30, 156, 870, 4946, 23854, 0, 1, 7, 39, 220, 1329, 8511, 54430, 289555, 0, 1, 8, 49, 296, 1895, 12988, 93070, 655362, 3783568, 0, 1, 9, 60, 385, 2583, 18536, 141316, 1112382, 8496454, 52624689, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,     1,     1,     1,      1,      1,      1, ...
  0,     1,     2,     3,      4,      5,      6, ...
  0,     4,     9,    15,     22,     30,     39, ...
  0,    26,    60,   103,    156,    220,    296, ...
  0,   218,   504,   870,   1329,   1895,   2583, ...
  0,  2151,  4946,  8511,  12988,  18536,  25332, ...
  0, 23854, 54430, 93070, 141316, 200930, 273915, ...
		

Crossrefs

Columns k=0..1 give A000007, A120971, A120970(n+1).

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*a(n-j, 2*j)));

Formula

See A120971.

A381648 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381649.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 44, 0, 1, 4, 18, 98, 510, 0, 1, 5, 26, 163, 1133, 7024, 0, 1, 6, 35, 240, 1884, 15508, 109362, 0, 1, 7, 45, 330, 2779, 25659, 239808, 1871530, 0, 1, 8, 56, 434, 3835, 37704, 394313, 4076904, 34590180, 0, 1, 9, 68, 553, 5070, 51891, 576178, 6661602, 74895252, 682396379, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 03 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,      1,      1,       1, ...
  0,      1,      2,      3,      4,      5,       6, ...
  0,      5,     11,     18,     26,     35,      45, ...
  0,     44,     98,    163,    240,    330,     434, ...
  0,    510,   1133,   1884,   2779,   3835,    5070, ...
  0,   7024,  15508,  25659,  37704,  51891,   68490, ...
  0, 109362, 239808, 394313, 576178, 789055, 1036973, ...
		

Crossrefs

Columns k=0..1 give A000007, A381649.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n-j+k, j)/(3*n-j+k)*a(n-j, 3*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(3*n-j+k,j)/(3*n-j+k) * A(n-j,3*j).
Showing 1-3 of 3 results.