cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A120970 G.f. A(x) satisfies A(x/A(x)^2) = 1 + x ; thus A(x) = 1 + Series_Reversion(x/A(x)^2).

Original entry on oeis.org

1, 1, 2, 9, 60, 504, 4946, 54430, 655362, 8496454, 117311198, 1711459903, 26228829200, 420370445830, 7021029571856, 121859518887327, 2192820745899978, 40831103986939664, 785429260324068156, 15585831041632684997, 318649154587152781210, 6704504768568697046504
Offset: 0

Views

Author

Paul D. Hanna, Jul 20 2006

Keywords

Comments

From Paul D. Hanna, Nov 16 2008: (Start)
More generally, if g.f. A(x) satisfies: A(x/A(x)^k) = 1 + x*A(x)^m, then
A(x) = 1 + x*G(x)^(m+k) where G(x) = A(x*G(x)^k) and G(x/A(x)^k) = A(x);
thus a(n) = [x^(n-1)] ((m+k)/(m+k*n))*A(x)^(m+k*n) for n>=1 with a(0)=1. (End)

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
Related expansions.
A(x)^2 = 1 + 2*x + 5*x^2 + 22*x^3 + 142*x^4 + 1164*x^5 + 11221*x^6 + ...
A(A(x)-1) = 1 + x + 4*x^2 + 26*x^3 + 218*x^4 + 2151*x^5 + 23854*x^6 + ...
A(A(x)-1)^2 = 1 + 2*x + 9*x^2 + 60*x^3 + 504*x^4 + 4946*x^5 + ...
x/A(x)^2 = x - 2*x^2 - x^3 - 10*x^4 - 73*x^5 - 662*x^6 - 6842*x^7 - ...
Series_Reversion(x/A(x)^2) = x + 2*x^2 + 9*x^3 + 60*x^4 + 504*x^5 + 4946*x^6 + ...
To illustrate the formula a(n) = [x^(n-1)] 2*A(x)^(2*n)/(2*n),
form a table of coefficients in A(x)^(2*n) as follows:
  A^2:  [(1), 2,   5,   22,   142,   1164,   11221,   121848, ...];
  A^4:  [ 1, (4), 14,   64,   397,   3116,   29002,   306468, ...];
  A^6:  [ 1,  6, (27), 134,   825,   6270,   56492,   580902, ...];
  A^8:  [ 1,  8,  44, (240), 1502,  11200,   98144,   983016, ...];
  A^10: [ 1, 10,  65,  390, (2520), 18672,  160115,  1565260, ...];
  A^12: [ 1, 12,  90,  592,  3987, (29676), 250730,  2399388, ...];
  A^14: [ 1, 14, 119,  854,  6027,  45458, (381010), 3582266, ...]; ...
in which the main diagonal forms the initial terms of this sequence:
[2/2*(1), 2/4*(4), 2/6*(27), 2/8*(240), 2/10*(2520), 2/12*(29676), ...].
		

Crossrefs

Cf. related variants: A145347, A145348, A147664, A145349, A145350. - Paul D. Hanna, Nov 16 2008
Cf. A381602.

Programs

  • Mathematica
    terms = 21; A[] = 1; Do[A[x] = 1 + x*A[A[x] - 1]^2 + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
  • PARI
    {a(n)=local(A=[1,1]);for(i=2,n,A=concat(A,0); A[ #A]=-Vec(subst(Ser(A),x,x/Ser(A)^2))[ #A]);A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* This sequence is generated when k=2, m=0: A(x/A(x)^k) = 1 + x*A(x)^m */ {a(n,k=2,m=0)=local(A=sum(i=0,n-1,a(i,k,m)*x^i));if(n==0,1,polcoeff((m+k)/(m+k*n)*A^(m+k*n),n-1))} \\ Paul D. Hanna, Nov 16 2008
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    b(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+k, j)/(2*n+k)*b(n-j, 2*j)));
    a(n) = if(n==0, 1, b(n-1, 2)); \\ Seiichi Manyama, Jun 04 2025

Formula

G.f. satisfies: A(x) = 1 + x*A(A(x) - 1)^2.
Let B(x) be the g.f. of A120971, then B(x) and g.f. A(x) are related by:
(a) B(x) = A(A(x)-1),
(b) B(x) = A(x*B(x)^2),
(c) A(x) = B(x/A(x)^2),
(d) A(x) = 1 + x*B(x)^2,
(e) B(x) = 1 + x*B(x)^2*B(A(x)-1)^2,
(f) A(B(x)-1) = B(A(x)-1) = B(x*B(x)^2).
a(n) = [x^(n-1)] (1/n)*A(x)^(2n) for n>=1 with a(0)=1; i.e., a(n) equals 1/n times the coefficient of x^(n-1) in A(x)^(2n) for n>=1. [Paul D. Hanna, Nov 16 2008]
From Seiichi Manyama, Jun 04 2025: (Start)
Let b(n,k) = [x^n] B(x)^k, where B(x) is the g.f. of A120971.
b(n,0) = 0^n; b(n,k) = k * Sum_{j=0..n} binomial(2*n+k,j)/(2*n+k) * b(n-j,2*j).
a(n) = b(n-1,2) for n > 0. (End)

A381592 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A381600.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 5, 0, 1, 3, 11, 39, 0, 1, 4, 18, 88, 383, 0, 1, 5, 26, 148, 869, 4360, 0, 1, 6, 35, 220, 1473, 9876, 55201, 0, 1, 7, 45, 305, 2211, 16740, 124473, 758877, 0, 1, 8, 56, 404, 3100, 25164, 210260, 1701630, 11157081, 0, 1, 9, 68, 518, 4158, 35381, 315312, 2860317, 24870695, 173623407, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,     1,      1,      1,      1,      1,      1, ...
  0,     1,      2,      3,      4,      5,      6, ...
  0,     5,     11,     18,     26,     35,     45, ...
  0,    39,     88,    148,    220,    305,    404, ...
  0,   383,    869,   1473,   2211,   3100,   4158, ...
  0,  4360,   9876,  16740,  25164,  35381,  47646, ...
  0, 55201, 124473, 210260, 315312, 442710, 595892, ...
		

Crossrefs

Columns k=0..2 give A000007, A381600, A381593.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(2*n+j+k, j)/(2*n+j+k)*a(n-j, 2*j)));

Formula

A(n,0) = 0^n; A(n,k) = k * Sum_{j=0..n} binomial(2*n+j+k,j)/(2*n+j+k) * A(n-j,2*j).

A381603 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A120973.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 6, 0, 1, 3, 13, 60, 0, 1, 4, 21, 132, 776, 0, 1, 5, 30, 217, 1708, 11802, 0, 1, 6, 40, 316, 2814, 25876, 201465, 0, 1, 7, 51, 430, 4113, 42510, 439446, 3759100, 0, 1, 8, 63, 560, 5625, 62016, 718647, 8155874, 75404151, 0, 1, 9, 76, 707, 7371, 84731, 1044228, 13270944, 162762498, 1608036861, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 01 2025

Keywords

Examples

			Square array begins:
  1,      1,      1,      1,       1,       1,       1, ...
  0,      1,      2,      3,       4,       5,       6, ...
  0,      6,     13,     21,      30,      40,      51, ...
  0,     60,    132,    217,     316,     430,     560, ...
  0,    776,   1708,   2814,    4113,    5625,    7371, ...
  0,  11802,  25876,  42510,   62016,   84731,  111018, ...
  0, 201465, 439446, 718647, 1044228, 1421835, 1857631, ...
		

Crossrefs

Columns k=0..1 give A000007, A120973.

Programs

  • PARI
    a(n, k) = if(k==0, 0^n, k*sum(j=0, n, binomial(3*n+k, j)/(3*n+k)*a(n-j, 3*j)));

Formula

See A120973.
Showing 1-3 of 3 results.