A277686 The number of nonisomorphic graphs on n vertices whose chromatic symmetric function in the p basis has a nonzero coefficient for each possible term.
1, 1, 2, 5, 20, 91, 823
Offset: 1
Crossrefs
Cf. A277686.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Caleb Ji has authored 15 sequences. Here are the ten most recent ones:
For n = 5 there are three trees, but a(5) = 2 because the star tree cannot be split into a tree of size 2 and a tree of size 3. - _Peter J. Taylor_, Sep 03 2021
For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}. From _Gus Wiseman_, Nov 21 2018: (Start) The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis): m(1111) m(211) + m(1111) 2m(211) + m(1111) m(22) + 2m(211) + m(1111) 3m(211) + m(1111) m(22) + 3m(211) + m(1111) m(31) + 3m(211) + m(1111) 2m(22) + 4m(211) + m(1111) m(22) + m(31) + 4m(211) + m(1111) 2m(22) + 2m(31) + 5m(211) + m(1111) m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111) (End)
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}]; chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}]; simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]]; Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)
a(6) = 14, the 14 edges are: (111111) - (21111), (21111) - (1110), (21111) - (2211), (1110) - (111), (1110) - (210), (2211) - (111), (2211) - (210), (2211) - (222), (210) - (00), (210) - (21), (111) - (21), (222) - (21), (00) - (0), (21) - (0).
b:= proc(x, y, z) option remember; `if`(x+y+z=1, 1, `if`(y>0 and z>0, b(x+1, y-1, z-1), 0)+ `if`(x>1 or x>0 and y>0 or x>0 and z>0, b(x-1, y, z), 0)+ `if`(y>1, b(x, y-2, z+1), 0)+`if`(z>1, b(x, y+1, z-2), 0)) end: a:= n-> b(0, n, n): seq(a(n), n=1..35); # Alois P. Heinz, Aug 18 2016
b[x_, y_, z_] := b[x, y, z] = If[x + y + z == 1, 1, If[y > 0 && z > 0, b[x + 1, y - 1, z - 1], 0] + If[x > 1 || x > 0 && y > 0 || x > 0 && z > 0, b[x - 1, y, z], 0] + If[y > 1, b[x, y - 2, z + 1], 0] + If[z > 1, b[x, y + 1, z - 2], 0]]; a[n_] := b[0, n, n]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
b:= proc(x, y, z) option remember; `if`(x+y+z=1, 1, `if`(y>0 and z>0, b(x+1, y-1, z-1), 0)+ `if`(x>1 or x>0 and y>0 or x>0 and z>0, b(x-1, y, z), 0)+ `if`(y>1, b(x, y-2, z+1), 0)+`if`(z>1, b(x, y+1, z-2), 0)) end: a:= n-> b(n, n, 0): seq(a(n), n=1..35); # Alois P. Heinz, Aug 18 2016
b[x_, y_, z_] := b[x, y, z] = If[x + y + z == 1, 1, If[y > 0 && z > 0, b[x + 1, y - 1, z - 1], 0] + If[x > 1 || x > 0 && y > 0 || x > 0 && z > 0, b[x - 1, y, z], 0] + If[y > 1, b[x, y - 2, z + 1], 0] + If[z > 1, b[x, y + 1, z - 2], 0]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 1, 35}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
Comments