Sam Heil has authored 7 sequences.
A289472
Number of gcds-sortable two-rooted graphs on n vertices.
Original entry on oeis.org
0, 1, 1, 17, 113, 7729, 224689, 61562033, 7309130417, 8013328398001, 3825133597372081, 16776170217003753137, 32072986971771549318833, 562672074981014060438175409, 4304275145962667488546071527089, 302049699050029408242290021253725873
Offset: 1
-
Table[Sum[2^(s^2 + 3 s) (Product[(2^(n - 2 - i) - 1), {i, 0, 2 s - 1}]/Product[(2^(2 i) - 1), {i, s}]), {s, 0, Floor[n/2] - 1}], {n, 16}] (* Michael De Vlieger, Jul 30 2017 *)
-
a(n) = sum(s=0, n\2-1, 2^(s^2+3*s)*prod(i=0, 2*s-1, (2^(n-2-i)-1))/prod(i=1, s, 2^(2*i)-1)); \\ Michel Marcus, Jul 07 2017
A289483
Number of gcds-sortable two-rooted graphs on n vertices such that all vertices have even degree.
Original entry on oeis.org
0, 1, 1, 5, 29, 365, 7565, 259533, 16766541, 1695913805, 319025518925, 99428910374221, 53629954918196557, 51436455420773021005, 81633965668282476025165, 234346782219278654389392717, 1131832076434284133556933170509
Offset: 1
-
Table[Sum[2^((s^2 + 3 s)/2) * Product[(2^(n - 2 - i) - 1), {i, 0, 2 s - 1}]/Product[(2^(2 j) - 1), {j, s}], {s, 0, Floor[n/2] - 1}], {n, 2, 17}] (* Michael De Vlieger, Jul 12 2017 *)
-
a(n) = sum(s=0, n\2-1, 2^((s^2+3*s)/2)*prod(i=0, 2*s-1, (2^(n-2-i)-1))/prod(i=1, s, 2^(2*i)-1)); \\ Michel Marcus, Jul 07 2017
A277686
The number of nonisomorphic graphs on n vertices whose chromatic symmetric function in the p basis has a nonzero coefficient for each possible term.
Original entry on oeis.org
1, 1, 2, 5, 20, 91, 823
Offset: 1
A277687
a(n) is the number of nonisomorphic trees on n vertices whose chromatic symmetric function in the p basis has a nonzero coefficient for each possible term.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 4, 2, 4, 2, 18, 2, 29, 5, 8, 9, 97, 7, 148, 9, 25, 20
Offset: 1
For n = 5 there are three trees, but a(5) = 2 because the star tree cannot be split into a tree of size 2 and a tree of size 3. - _Peter J. Taylor_, Sep 03 2021
A277203
Number of distinct chromatic symmetric functions realizable by a graph on n vertices.
Original entry on oeis.org
1, 2, 4, 11, 33, 146, 939, 10932
Offset: 1
For n = 3, under the p basis, the CSF's are: p_{1, 1, 1}, p_{1, 1, 1} - p_{2, 1}, p_{1, 1, 1} - 2p_{2, 1} + p_{3}, p_{1, 1, 1} - 3p_{2, 1} + 2p_{3}.
From _Gus Wiseman_, Nov 21 2018: (Start)
The a(4) = 11 chromatic symmetric functions (m is the augmented monomial symmetric function basis):
m(1111)
m(211) + m(1111)
2m(211) + m(1111)
m(22) + 2m(211) + m(1111)
3m(211) + m(1111)
m(22) + 3m(211) + m(1111)
m(31) + 3m(211) + m(1111)
2m(22) + 4m(211) + m(1111)
m(22) + m(31) + 4m(211) + m(1111)
2m(22) + 2m(31) + 5m(211) + m(1111)
m(4) + 3m(22) + 4m(31) + 6m(211) + m(1111)
(End)
Cf.
A000088,
A000110,
A000569,
A006125,
A229048,
A240936,
A245883,
A277204,
A277205,
A321750,
A321751,
A321895,
A321911.
-
spsu[,{}]:={{}};spsu[foo,set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@spsu[Select[foo,Complement[#,Complement[set,s]]=={}&],Complement[set,s]]]/@Cases[foo,{i,_}];
chromSF[g_]:=Sum[m[Sort[Length/@stn,Greater]],{stn,spsu[Select[Subsets[Union@@g],Select[DeleteCases[g,{_}],Function[ed,Complement[ed,#]=={}]]=={}&],Union@@g]}];
simpleSpans[n_]:=simpleSpans[n]=If[n==0,{{}},Union@@Table[If[#=={},Union[ine,{{n}}],Union[Complement[ine,List/@#],{#,n}&/@#]]&/@Subsets[Range[n-1]],{ine,simpleSpans[n-1]}]];
Table[Length[Union[chromSF/@simpleSpans[n]]],{n,6}] (* Gus Wiseman, Nov 21 2018 *)
A277204
Number of chromatic symmetric functions realizable from exactly one graph on n vertices.
Original entry on oeis.org
1, 2, 4, 11, 33, 146, 846, 9807, 229972
Offset: 1
A277205
Number of chromatic symmetric functions realizable by exactly 2 graphs on n vertices.
Original entry on oeis.org
0, 0, 0, 0, 1, 10, 81, 907, 16111
Offset: 1
Comments