cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A289483 Number of gcds-sortable two-rooted graphs on n vertices such that all vertices have even degree.

Original entry on oeis.org

0, 1, 1, 5, 29, 365, 7565, 259533, 16766541, 1695913805, 319025518925, 99428910374221, 53629954918196557, 51436455420773021005, 81633965668282476025165, 234346782219278654389392717, 1131832076434284133556933170509
Offset: 1

Views

Author

Sam Heil, Jul 06 2017

Keywords

Comments

This formula comes from the fact that for each possible value of the (n-2)-vertex subgraph G containing all of the non-root vertices, if G has adjacency matrix A over F_2 then there are 2^rank(A) two-rooted gcds-sortable graphs with all vertices of even degree containing the non-root subgraph G. Then, we can apply the formula from MacWilliams for the number of symmetric binary matrices with zero diagonal of each rank to get the total number of gcds-sortable graphs with all vertices of even degree.

Crossrefs

Cf. A289472.

Programs

  • Mathematica
    Table[Sum[2^((s^2 + 3 s)/2) * Product[(2^(n - 2 - i) - 1), {i, 0, 2 s - 1}]/Product[(2^(2 j) - 1), {j, s}], {s, 0, Floor[n/2] - 1}], {n, 2, 17}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    a(n) = sum(s=0, n\2-1, 2^((s^2+3*s)/2)*prod(i=0, 2*s-1, (2^(n-2-i)-1))/prod(i=1, s, 2^(2*i)-1)); \\ Michel Marcus, Jul 07 2017

Formula

a(n) = Sum_{s=0..floor(n/2)-1} 2^((s^2+3s)/2) * (Product_{i=0..2s-1} (2^(n-2-i)-1) / Product_{i=1..s} (2^(2i)-1))
Showing 1-1 of 1 results.