A242027
Number T(n,k) of endofunctions on [n] with cycles of k distinct lengths; triangle T(n,k), n>=0, 0<=k<=A003056(n), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 4, 0, 24, 3, 0, 206, 50, 0, 2300, 825, 0, 31742, 14794, 120, 0, 522466, 294987, 6090, 0, 9996478, 6547946, 232792, 0, 218088504, 160994565, 8337420, 0, 5344652492, 4355845868, 299350440, 151200, 0, 145386399554, 128831993037, 11074483860, 18794160
Offset: 0
T(3,2) = 3: (1,3,2), (3,2,1), (2,1,3).
Triangle T(n,k) begins:
00 : 1;
01 : 0, 1;
02 : 0, 4;
03 : 0, 24, 3;
04 : 0, 206, 50;
05 : 0, 2300, 825;
06 : 0, 31742, 14794, 120;
07 : 0, 522466, 294987, 6090;
08 : 0, 9996478, 6547946, 232792;
09 : 0, 218088504, 160994565, 8337420;
10 : 0, 5344652492, 4355845868, 299350440, 151200;
Columns k=0-10 give:
A000007,
A241980 for n>0,
A246283,
A246284,
A246285,
A246286,
A246287,
A246288,
A246289,
A246290,
A246291.
-
with(combinat):
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0),
`if`(i<1 or k<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1, k-`if`(j=0, 0, 1)), j=0..n/i)))
end:
T:= (n, k)-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2, k), j=0..n):
seq(seq(T(n, k), k=0..floor((sqrt(1+8*n)-1)/2)), n=0..14);
-
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k==0, 1, 0], If[i<1 || k<1, 0, Sum[(i-1)!^j*multinomial[n, Join[ {n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k-If[j==0, 0, 1]], {j, 0, n/i}]] ]; T[0, 0] = 1; T[n_, k_] := Sum[Binomial[n-1, j-1]*n^(n-j)*b[j, j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[(Sqrt[1+8n]-1)/2]}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
A243098
Number T(n,k) of endofunctions on [n] with all cycles of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 3, 1, 0, 16, 6, 2, 0, 125, 51, 24, 6, 0, 1296, 560, 300, 120, 24, 0, 16807, 7575, 4360, 2160, 720, 120, 0, 262144, 122052, 73710, 41160, 17640, 5040, 720, 0, 4782969, 2285353, 1430016, 861420, 430080, 161280, 40320, 5040
Offset: 0
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 16, 6, 2;
0, 125, 51, 24, 6;
0, 1296, 560, 300, 120, 24;
0, 16807, 7575, 4360, 2160, 720, 120;
0, 262144, 122052, 73710, 41160, 17640, 5040, 720;
...
Main diagonal gives
A000142(n-1) for n>0.
-
with(combinat):
T:= (n, k)-> `if`(k*n=0, `if`(k+n=0, 1, 0),
add(binomial(n-1, j*k-1)*n^(n-j*k)*(k-1)!^j*
multinomial(j*k, k$j, 0)/j!, j=0..n/k)):
seq(seq(T(n, k), k=0..n), n=0..10);
-
multinomial[n_, k_] := n!/Times @@ (k!); T[n_, k_] := If[k*n==0, If[k+n == 0, 1, 0], Sum[Binomial[n-1, j*k-1]*n^(n-j*k)*(k-1)!^j*multinomial[j*k, Append[Array[k&, j], 0]]/j!, {j, 0, n/k}]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 19 2017, translated from Maple *)
A212789
Number of endofunctions on [n] with distinct cycle lengths.
Original entry on oeis.org
1, 1, 3, 20, 186, 2229, 32790, 572018, 11541600, 264370473, 6776462320, 192163455384, 5972728750560, 201906797867085, 7375152706023648, 289473254317393110, 12149690892777901568, 543010240381452000273, 25746662043469525754880, 1290829803802550504743036
Offset: 0
a(3)=20 because there are 27 functions f:{1,2,3}->{1,2,3} but 7 of these have at least two cycles of equal length: (1,2,3);(1,2,1);(1,2,2);(1,1,3);(1,3,3);(2,2,3)(3,2,3) where the functions are represented by their values.
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1), j=0..min(1, n/i))))
end:
a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j$2), j=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 10 2014
-
nn = 20; p = Product[1 + t^n/n, {n, 1, nn}]; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Range[0, nn]! CoefficientList[Series[p, {x, 0, nn}], x]
Showing 1-3 of 3 results.
Comments