cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A060281 Triangle T(n,k) read by rows giving number of labeled mappings (or functional digraphs) from n points to themselves (endofunctions) with exactly k cycles, k=1..n.

Original entry on oeis.org

1, 3, 1, 17, 9, 1, 142, 95, 18, 1, 1569, 1220, 305, 30, 1, 21576, 18694, 5595, 745, 45, 1, 355081, 334369, 113974, 18515, 1540, 63, 1, 6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1, 148869153, 158479488, 64727522, 13591116, 1632099, 116172, 4830, 108, 1
Offset: 1

Views

Author

Vladeta Jovovic, Apr 09 2001

Keywords

Comments

Also called sagittal graphs.
T(n,k)=1 iff n=k (counts the identity mapping of [n]). - Len Smiley, Apr 03 2006
Also the coefficients of the tree polynomials t_{n}(y) defined by (1-T(z))^(-y) = Sum_{n>=0} t_{n}(y) (z^n/n!) where T(z) is Cayley's tree function T(z) = Sum_{n>=1} n^(n-1) (z^n/n!) giving the number of labeled trees A000169. - Peter Luschny, Mar 03 2009

Examples

			Triangle T(n,k) begins:
        1;
        3,       1;
       17,       9,       1;
      142,      95,      18,      1;
     1569,    1220,     305,     30,     1;
    21576,   18694,    5595,    745,    45,    1;
   355081,  334369,  113974,  18515,  1540,   63,  1;
  6805296, 6852460, 2581964, 484729, 49840, 2842, 84, 1;
  ...
T(3,2)=9: (1,2,3)--> [(2,1,3),(3,2,1),(1,3,2),(1,1,3),(1,2,1), (1,2,2),(2,2,3),(3,2,3),(1,3,3)].
From _Peter Luschny_, Mar 03 2009: (Start)
  Tree polynomials (with offset 0):
  t_0(y) = 1;
  t_1(y) = y;
  t_2(y) = 3*y + y^2;
  t_3(y) = 17*y + 9*y^2 + y^3; (End)
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
  • W. Szpankowski. Average case analysis of algorithms on sequences. John Wiley & Sons, 2001. - Peter Luschny, Mar 03 2009

Crossrefs

Row sums: A000312.
Main diagonal and first lower diagonal give: A000012, A045943.

Programs

  • Magma
    A060281:= func< n,k | (&+[Binomial(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*StirlingFirst(j+1,k): j in [0..n-1]]) >;
    [A060281(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    with(combinat):T:=array(1..8,1..8):for m from 1 to 8 do for p from 1 to m do T[m,p]:=sum(binomial(m-1,k)*m^(m-1-k)*(-1)^(p+k+1)*stirling1(k+1,p),k=0..m-1); print(T[m,p]) od od; # Len Smiley, Apr 03 2006
    From Peter Luschny, Mar 03 2009: (Start)
    T := z -> sum(n^(n-1)*z^n/n!,n=1..16):
    p := convert(simplify(series((1-T(z))^(-y),z,12)),'polynom'):
    seq(print(coeff(p,z,i)*i!),i=0..8); (End)
  • Mathematica
    t=Sum[n^(n-1) x^n/n!,{n,1,10}];
    Transpose[Table[Rest[Range[0, 10]! CoefficientList[Series[Log[1/(1 - t)]^n/n!, {x, 0, 10}], x]], {n,1,10}]]//Grid (* Geoffrey Critzer, Mar 13 2011*)
    Table[k! SeriesCoefficient[1/(1 + ProductLog[-t])^x, {t, 0, k}, {x, 0, j}], {k, 10}, {j, k}] (* Jan Mangaldan, Mar 02 2013 *)
  • SageMath
    @CachedFunction
    def A060281(n,k): return sum(binomial(n-1,j)*n^(n-1-j)*stirling_number1(j+1,k) for j in range(n))
    flatten([[A060281(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Nov 06 2024

Formula

E.g.f.: 1/(1 + LambertW(-x))^y.
T(n,k) = Sum_{j=0..n-1} C(n-1,j)*n^(n-1-j)*(-1)^(k+j+1)*A008275(j+1,k) = Sum_{j=0..n-1} binomial(n-1,j)*n^(n-1-j)*s(j+1,k). [Riordan] (Note: s(m,p) denotes signless Stirling cycle number (first kind), A008275 is the signed triangle.) - Len Smiley, Apr 03 2006
T(2*n, n) = A273442(n), n >= 1. - Alois P. Heinz, May 22 2016
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A190314(n).
Sum_{k=1..n} (-1)^(k+1) * T(n,k) = A000169(n) for n>=1. (End)

A218868 Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.

Original entry on oeis.org

1, 2, 3, 3, 10, 14, 25, 95, 176, 424, 120, 721, 3269, 1050, 6406, 21202, 12712, 42561, 178443, 141876, 436402, 1622798, 1418400, 151200, 3628801, 17064179, 17061660, 2162160, 48073796, 177093256, 212254548, 41580000, 479001601, 2293658861, 2735287698, 719072640
Offset: 1

Views

Author

Geoffrey Critzer, Nov 07 2012

Keywords

Comments

T(A000217(n),n) gives A246292. - Alois P. Heinz, Aug 21 2014

Examples

			:      1;
:      2;
:      3,       3;
:     10,      14;
:     25,      95;
:    176,     424,     120;
:    721,    3269,    1050;
:   6406,   21202,   12712;
:  42561,  178443,  141876;
: 436402, 1622798, 1418400, 151200;
		

Crossrefs

Columns k=1-3 give: A005225, A005772, A133119.
Row sums are: A000142.
Row lengths are: A003056.
Cf. A208437, A242027 (the same for endofunctions), A246292, A317327.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..16);  # Alois P. Heinz, Aug 21 2014
  • Mathematica
    nn=10;a=Product[1-y+y Exp[x^i/i],{i,1,nn}];f[list_]:=Select[list,#>0&];Map[f,Drop[Range[0,nn]!CoefficientList[Series[a ,{x,0,nn}],{x,y}],1]]//Grid

Formula

E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).

A241980 Number of endofunctions on [n] where all cycle lengths are equal.

Original entry on oeis.org

1, 1, 4, 24, 206, 2300, 31742, 522466, 9996478, 218088504, 5344652492, 145386399554, 4347272984936, 141737636485588, 5004538251283846, 190247639729155110, 7747479351505166738, 336492490519027631984, 15526758954835131888980, 758548951300064645742034
Offset: 0

Views

Author

Alois P. Heinz, Aug 10 2014

Keywords

Crossrefs

Cf. A005225, A061356, A212789, A242027 (column k=1).
Row sums of A243098.

Programs

  • Maple
    with(numtheory):
    b:= n-> `if`(n=0, 1, n!*add((d!*(n/d)^d)^(-1), d=divisors(n))):
    a:= n-> add(binomial(n-1, j-1)*n^(n-j)*b(j), j=0..n):
    seq(a(n), n=0..25);
  • Mathematica
    nn=20;t[x_]:=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[1+Sum[Exp[t[x]^i/i]-1,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Aug 11 2014 *)

Formula

a(n) = Sum_{j=0..n} C(n-1,j-1) * n^(n-j) * A005225(j).
a(n) = Sum_{k=0..n} A243098(n,k).

A246292 Number of permutations on [n*(n+1)/2] with cycles of n distinct lengths.

Original entry on oeis.org

1, 1, 3, 120, 151200, 10897286400, 70959641905152000, 60493719168990845337600000, 9226024969987629401488081551360000000, 329646772667218349211759153151614073700352000000000, 3498788402132461399351052923160966975192989707740695756800000000000
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> binomial(n+1, 2)!/n!:
    seq(a(n), n=0..12);

Formula

a(n) = C(n+1,2)! / n!.
a(n) = A218868(n*(n+1)/2,n) = A218868(A000217(n),n).
a(n) = A242027(n*(n+1)/2,n) = A242027(A000217(n),n).
a(n) = A022915(n) * A000178(n-1) for n>0.

A246283 Number of endofunctions on [n] with cycles of two distinct lengths.

Original entry on oeis.org

3, 50, 825, 14794, 294987, 6547946, 160994565, 4355845868, 128831993037, 4139915120692, 143730813561387, 5364402750234722, 214267821055280535, 9122448969654942398, 412494871628188325985, 19745497885965416922364, 997667658771538572210069
Offset: 3

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=2 of A242027.

A246284 Number of endofunctions on [n] with cycles of three distinct lengths.

Original entry on oeis.org

120, 6090, 232792, 8337420, 299350440, 11074483860, 427387853508, 17302253251998, 736435961119768, 32970154976590650, 1551833612483679600, 76712206915275154368, 3977549433235139894640, 216011528111397978249156, 12268895890831542489647980
Offset: 6

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=3 of A242027.

A246285 Number of endofunctions on [n] with cycles of four distinct lengths.

Original entry on oeis.org

151200, 18794160, 1524489120, 104403293280, 6629862919680, 408263722546680, 24979292241583680, 1540245109352826240, 96546169418188875840, 6185447845988110316640, 406427517408935067292800, 27447169190924624967665280, 1907535125221297935659493120
Offset: 10

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=4 of A242027.

A246286 Number of endofunctions on [n] with cycles of five distinct lengths.

Original entry on oeis.org

10897286400, 2847824179200, 447714492825600, 55631842659993600, 6069631324282606080, 613491878066254387200, 59271533998668036864000, 5582783667191422365273600, 519429902059266063124089600, 48173463238302027134150906880, 4482046832478916432636662912000
Offset: 15

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=5 of A242027.

A246287 Number of endofunctions on [n] with cycles of six distinct lengths.

Original entry on oeis.org

70959641905152000, 34902006725634048000, 9826160066029891584000, 2094608362584149508096000, 377645969857422372986880000, 61037547512109625693716480000, 9159551131283801888655375360000, 1305831228981957559100465326080000, 179691299614983815137464791629824000
Offset: 21

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=6 of A242027.

A246288 Number of endofunctions on [n] with cycles of seven distinct lengths.

Original entry on oeis.org

60493719168990845337600000, 51533087017084076371968000000, 24328368349590081870213120000000, 8447402048381795563019001446400000, 2416739631770031221957067001036800000, 605297545839594874847438968061952000000, 137754467147216760340877937054970675200000
Offset: 28

Views

Author

Alois P. Heinz, Aug 21 2014

Keywords

Crossrefs

Column k=7 of A242027.
Showing 1-10 of 13 results. Next