cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A059297 Triangle of idempotent numbers binomial(n,k)*k^(n-k), version 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 24, 12, 1, 0, 5, 80, 90, 20, 1, 0, 6, 240, 540, 240, 30, 1, 0, 7, 672, 2835, 2240, 525, 42, 1, 0, 8, 1792, 13608, 17920, 7000, 1008, 56, 1, 0, 9, 4608, 61236, 129024, 78750, 18144, 1764, 72, 1, 0, 10, 11520, 262440
Offset: 0

Views

Author

N. J. A. Sloane, Jan 25 2001

Keywords

Comments

T(n,k) = C(n,k)*k^(n-k) is the number of functions f from domain [n] to codomain [n+1] such that f(x)=n+1 for exactly k elements x of [n] and f(f(x))=n+1 for the remaining n-k elements x of [n]. Subsequently, row sums of T(n,k) provide the number of functions f:[n]->[n+1] such that either f(x)=n+1 or f(f(x))=n+1 for every x in [n]. We note that there are C(n,k) ways to choose the k elements mapped to n+1 and there are k^(n-k) ways to map n-k elements to a set of k elements. - Dennis P. Walsh, Sep 05 2012
Conjecture: the matrix inverse is A137452. - R. J. Mathar, Mar 12 2013
The above conjecture is correct. This triangle is the exponential Riordan array [1, x*exp(x)]. Thus the inverse array is the exponential Riordan array [ 1, W(x)], which equals A137452. - Peter Bala, Apr 08 2013

Examples

			Triangle begins:
1;
0,  1;
0,  2,   1;
0,  3,   6,    1;
0,  4,  24,   12,    1;
0,  5,  80,   90,   20,   1;
0,  6, 240,  540,  240,  30,  1;
0,  7, 672, 2835, 2240, 525, 42,  1;
Row 4. Expansion of x^4 in terms of Abel polynomials:
x^4 = -4*x+24*x*(x+2)-12*x*(x+3)^2+x*(x+4)^3.
O.g.f. for column 2: A(-2,1/x) = x^2/(1-2*x)^3 = x^2+6*x^3+24*x^4+80*x^5+....
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 91, #43 and p. 135, [3i'].

Crossrefs

There are 4 versions: A059297, A059298, A059299, A059300.
Diagonals give A001788, A036216, A040075, A050982, A002378, 3*A002417, etc.
Row sums are A000248.
Cf. A061356, A202017, A137452 (inverse array), A264428.

Programs

  • Magma
    /* As triangle */ [[Binomial(n,k)*k^(n-k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 22 2015
    
  • Maple
    T:= (n, k)-> binomial(n, k) *k^(n-k):
    seq(seq(T(n, k), k=0..n), n=0..12);  # Alois P. Heinz, Sep 05 2012
  • Mathematica
    nn=10;f[list_]:=Select[list,#>0&];Prepend[Map[Prepend[#,0]&,Rest[Map[f,Range[0,nn]!CoefficientList[Series[Exp[y x Exp[x]],{x,0,nn}],{x,y}]]]],{1}]//Grid  (* Geoffrey Critzer, Feb 09 2013 *)
    t[n_, k_] := Binomial[n, k]*k^(n - k); Prepend[Flatten@Table[t[n, k], {n, 10}, {k, 0, n}], 1] (* Arkadiusz Wesolowski, Mar 23 2013 *)
  • Sage
    # uses[bell_transform from A264428]
    def A059297_row(n):
        nat = [k for k in (1..n)]
        return bell_transform(n, nat)
    [A059297_row(n)  for n in range(8)] # Peter Luschny, Dec 20 2015

Formula

E.g.f.: exp(x*y*exp(y)). - Vladeta Jovovic, Nov 18 2003
Up to signs, this is the triangle of connection constants expressing the monomials x^n as a linear combination of the Abel polynomials A(k,x) := x*(x+k)^(k-1), 0 <= k <= n. O.g.f. for the k-th column: A(-k,1/x) = x^k/(1-k*x)^(k+1). Cf. A061356. Examples are given below. - Peter Bala, Oct 09 2011
The o.g.f.'s for the diagonals of this triangle are the rational functions occurring in the expansion of the compositional inverse (with respect to x) (x-t*x*exp(x))^-1 = x/(1-t) + 2*t/(1-t)^3*x^2/2! + (3*t+9*t^2)/(1-t)^5*x^3/3! + (4*t+52*t^2+64*t^3)/(1-t)^7*x^4/4! + .... For example, the o.g.f. for second subdiagonal is (3*t+9*t^2)/(1-t)^5 = 3*t + 24*t^2 + 90*t^3 + 240*t^4 + .... See the Bala link. The coefficients of the numerator polynomials are listed in A202017. - Peter Bala, Dec 08 2011
Recurrence equation: T(n+1,k+1) = Sum_{j=0..n-k} (j+1)*binomial(n,j)*T(n-j,k). - Peter Bala, Jan 13 2015
The Bell transform of [1,2,3,...]. See A264428 for the Bell transform. - Peter Luschny, Dec 20 2015

A061356 Triangle read by rows: T(n, k) is the number of labeled trees on n nodes with maximal node degree k (0 < k < n).

Original entry on oeis.org

1, 2, 1, 9, 6, 1, 64, 48, 12, 1, 625, 500, 150, 20, 1, 7776, 6480, 2160, 360, 30, 1, 117649, 100842, 36015, 6860, 735, 42, 1, 2097152, 1835008, 688128, 143360, 17920, 1344, 56, 1, 43046721, 38263752, 14880348, 3306744, 459270, 40824, 2268, 72, 1
Offset: 2

Views

Author

Olivier Gérard, Jun 07 2001

Keywords

Comments

Essentially the coefficients of the Abel polynomials (A137452). - Peter Luschny, Jun 12 2022
This is a formula from Comtet, Theorem F, vol. I, p. 81 (French edition) used in proving Theorem D.
If we let N = n+1, binomial(N-2, k-1)*(N-1)^(N-k-1) = binomial(n-1, k-1)*n^(n-k), so this sequence with offset 1,1 also gives the number of rooted forests of k trees over [n]. - Washington Bomfim, Jan 09 2008
Let S(n,k) be the signed triangle, S(n,k) = (-1)^(n-k)T(n,k), which starts 1, -2, 1, 9, -6, 1, ..., then the inverse of S is the triangle of idempotent numbers A059298. - Peter Luschny, Mar 13 2009
With offset 1 also number of labeled multigraphs of k components, n nodes, and no cycles except one loop in each component. See link below to have a picture showing the bijection between rooted forests and multigraphs of this kind. (Note that there are no labels in the picture, but the bijection remains true if we label the nodes.) - Washington Bomfim, Sep 04 2010
With offset 1, T(n,k) is the number of forests of rooted trees on n nodes with exactly k (rooted) trees. - Geoffrey Critzer, Feb 10 2012
Also the Bell transform of the sequence (n+1)^n (A000169(n+1)) without column 0. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 21 2016
Abel polynomials A(n,x) = x*(x+n)^(n-1) satisfy d/dx A(n,x) = n*A(n-1,x+1). - Michael Somos, May 10 2024
Also, T(n,k) is the number of parking functions with k ties. - Kyle Celano, Aug 18 2025

Examples

			Triangle begins
    1;
    2,     1;
    9,     6,     1;
   64,    48,    12,    1;
  625,   500,   150,   20,    1;
 7776,  6480,  2160,  360,   30,    1;
 ...
From _Peter Bala_, Sep 21 2012: (Start)
O.g.f.'s for the diagonals begin:
1/(1-x) = 1 + x + x^2 + x^3 + ...
2*x/(1-x)^3 = 2 + 6*x + 12*x^3 + ... A002378(n+1)
(9+3*x)/(1-x)^5 = 9 + 48*x + 150*x^2 + ... 3*A004320(n+1)
The numerator polynomials are the row polynomials of A155163.
(End)
		

References

  • L. Comtet, Analyse Combinatoire, P.U.F., Paris 1970. Volume 1, p 81.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974.

Crossrefs

Variant of A137452.
First diagonal is A002378.
Row sums give A000272.
Cf. A028421, A059297, A139526 (row reverse), A155163, A202017.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    BellMatrix(n -> (n+1)^n, 12); # Peter Luschny, Jan 21 2016
  • Mathematica
    nn = 7; t = Sum[n^(n - 1)  x^n/n!, {n, 1, nn}]; f[list_] := Select[list, # > 0 &]; Map[f, Drop[Range[0, nn]! CoefficientList[Series[Exp[y t], {x, 0, nn}], {x, y}], 1]] // Flatten  (* Geoffrey Critzer, Feb 10 2012 *)
    T[n_, m_] := T[n, m] = Binomial[n, m]*Sum[m^k*T[n-m, k], {k, 1, n-m}]; T[n_, n_] = 1; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Vladimir Kruchinin *)
    Table[Binomial[n - 2, k - 1]*(n - 1)^(n - k - 1), {n, 2, 12}, {k, 1, n - 1}] // Flatten (* G. C. Greubel, Nov 12 2017 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
    rows = 10;
    M = BellMatrix[(# + 1)^#&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    create_list(binomial(n,k)*(n+1)^(n-k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 01 2014 */
    
  • PARI
    for(n=2,11, for(k=1,n-1, print1(binomial(n-2, k-1)*(n-1)^(n-k-1), ", "))) \\ G. C. Greubel, Nov 12 2017
  • Sage
    # uses[bell_matrix from A264428]
    # Adds (1,0,0,0,...) as column 0 to the triangle.
    bell_matrix(lambda n: (n+1)^n, 12) # Peter Luschny, Jan 21 2016
    

Formula

T(n, k) = binomial(n-2, k-1)*(n-1)^(n-k-1).
E.g.f.: (-LambertW(-y)/y)^(x+1)/(1+LambertW(-y)). - Vladeta Jovovic
From Peter Bala, Sep 21 2012: (Start)
Let T(x) = Sum_{n >= 0} n^(n-1)*x^n/n! denote the tree function of A000169. E.g.f.: F(x,t) := exp(t*T(x)) - 1 = -1 + {T(x)/x}^t = t*x + t*(2 + t)*x^2/2! + t*(9 + 6*t + t^2)*x^3/3! + ....
The compositional inverse with respect to x of (1/t)*F(x,t) is the e.g.f. for a signed version of the row reverse of A028421.
The row generating polynomials are the Abel polynomials A(n,x) = x*(x+n)^(n-1) for n >= 1.
Define B(n,x) = x^n/(1+n*x)^(n+1) = (-1)^n*A(-n,-1/x) for n >= 1. The k-th column entries are the coefficients in the formal series expansion of x^k in terms of B(n,x). For example, Col. 1: x = B(1,x) + 2*B(2,x) + 9*B(3,x) + 64*B(4,x) + ..., Col. 2: x^2 = B(2,x) + 6*B(3,x) + 48*B(4,x) + 500*B(5,x) + ... Compare with A059297.
n-th row sum = A000272(n+1).
Row reverse triangle is A139526.
The o.g.f.'s for the diagonals of the triangle are the rational functions R(n,x)/(1-x)^(2*n+1), where R(n,x) are the row polynomials of A155163. See below for examples.
(End)
T(n,m) = C(n,m)*Sum_{k=1..n-m} m^k*T(n-m,k), T(n,n) = 1. - Vladimir Kruchinin, Mar 31 2015

A155163 Triangle T(n,k): the coefficient of [x^k] of the series -(x-1)^(2*n+1) *Sum_{j>=0} (j+1)^n *binomial(j,n) * x^(j-n); columns 0<=k

Original entry on oeis.org

2, 9, 3, 64, 52, 4, 625, 855, 195, 5, 7776, 15306, 6546, 606, 6, 117649, 305571, 201866, 38486, 1701, 7, 2097152, 6806472, 6244680, 1950320, 194160, 4488, 8, 43046721, 168205743, 200503701, 90665595, 15597315, 887949, 11367, 9
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Jan 21 2009

Keywords

Comments

Row sums are A001813: 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400.

Examples

			[n\k][     0           1          2        3         4       5      6   7]
[1]        2;
[2]        9,         3;
[3]       64,        52,         4;
[4]      625,       855,       195,        5;
[5]     7776,     15306,      6546,      606,        6;
[6]   117649,    305571,    201866,    38486,     1701,      7;
[7]  2097152,   6806472,   6244680,  1950320,   194160,   4488,     8;
[8] 43046721, 168205743, 200503701, 90665595, 15597315, 887949, 11367, 9;
		

Crossrefs

Cf. A202017.

Programs

  • GAP
    T := Flat(List([1..50], n->List([1..n], m->Sum([1..n], k->Factorial(k) * (-1)^(n+m+k+1) * Stirling2(n,k) * Binomial(n-k,m-1) * Binomial(n+k,k))))); # Muniru A Asiru, Jan 27 2018
  • Maple
    A155163 := proc(n,k)
            -(x-1)^(2*n+1)*add(x^(j-n)*(j+1)^n*binomial(j,n),j=0..n+10) ;
            coeftayl(%,x=0,k) ;
    end proc: # R. J. Mathar, Feb 13 2013
  • Mathematica
    Clear[p, x, n, m]; p[x_, n_] = -((x - 1)^(2*n + 1)/x^n)*Sum[( k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];
    Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
    Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
    Flatten[%]
  • Maxima
    T(n,m):=sum(k!*(-1)^(n+m+k+1)*stirling2(n,k)*binomial(n-k,m-1)*binomial(n+k,k),k,1,n); /* Vladimir Kruchinin, Jan 27 2018 */
    

Formula

T(n,m) = Sum_{k=1..n} k!*(-1)^(n+m+k+1)*Stirling2(n,k)*C(n-k,m-1)*C(n+k,k). - Vladimir Kruchinin, Jan 27 2018
E.g.f. A(x,y) = E(A(x,y),y), where E(x,y)=(1-y)/(exp(x*(y-1))-y) - e.g.f. Eulerian numbers (A173018). - Vladimir Kruchinin, Aug 31 2018
Showing 1-3 of 3 results.