cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A215534 Matrix inverse of triangle A088956.

Original entry on oeis.org

1, -1, 1, -1, -2, 1, -4, -3, -3, 1, -27, -16, -6, -4, 1, -256, -135, -40, -10, -5, 1, -3125, -1536, -405, -80, -15, -6, 1, -46656, -21875, -5376, -945, -140, -21, -7, 1, -823543, -373248, -87500, -14336, -1890, -224, -28, -8, 1, -16777216, -7411887, -1679616, -262500, -32256, -3402, -336, -36, -9, 1
Offset: 0

Views

Author

Peter Bala, Sep 11 2012

Keywords

Comments

For commuting lower unitriangular matrices A and B, we define A raised to the matrix power B, denoted A^^B, to be the matrix Exp(B*log(A)). Here Exp is the matrix exponential and the matrix logarithm Log(A) is defined as sum {n >= 1} (-1)^(n+1)*(A-1)^n/n. This triangle, call it M, is related to Pascal's triangle P by M^^M = P^(-1). Also M = P^(-1)^^A088956.

Examples

			Triangle begins
.n\k.|......0......1.....2......3......4......5......6
= = = = = = = = = = = = = = = = = = = = = = = = = = = =
..0..|......1
..1..|.....-1......1
..2..|.....-1.....-2.....1
..3..|.....-4.....-3....-3......1
..4..|....-27....-16....-6.....-4......1
..5..|...-256...-135...-40....-10.....-5......1
..6..|..-3125..-1536..-405....-80....-15.....-6......1
...
		

Crossrefs

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 10;
    R = RiordanArray[-#/ProductLog[-#]&, #&, rows, True];
    R // Flatten (* Jean-François Alcover, Jul 20 2019 *)

Formula

T(n,k) = -binomial(n,k)*(n-k-1)^(n-k-1) for n,k >= 0.
E.g.f.: (x/T(x))*exp(t*x) = exp(-T(x))*exp(t*x) = 1 + (-1 + t)*x + (-1 - 2*t + t^2)*x^2/2! + ...., where T(x) := sum {n >= 0} n^(n-1) *x^n/n! denotes the tree function of A000169. The triangle is the exponential Riordan array [x/T(x),x] belonging to the exponential Appell group.
Let A(n,x) = x*(x+n)^(n-1) be an Abel polynomial. This is the triangle of connection constants expressing A(n,x) as a linear combination of the basis polynomials A(k,x+1), 0 <= k <= n. For example, A(4,x) = -27*A(0,x+1) - 16*A(1,x+1) - 6*A(2,x+1) - 4*A(3,x+1) + A(4,x+1) giving row 4 as [-27,-16,-6,-4,1].

A001858 Number of forests of trees on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 38, 291, 2932, 36961, 561948, 10026505, 205608536, 4767440679, 123373203208, 3525630110107, 110284283006640, 3748357699560961, 137557910094840848, 5421179050350334929, 228359487335194570528, 10239206473040881277575, 486909744862576654283616
Offset: 0

Views

Author

Keywords

Comments

The number of integer lattice points in the permutation polytope of {1,2,...,n}. - Max Alekseyev, Jan 26 2010
Equals the number of score sequences for a tournament on n vertices. See Prop. 7 of the article by Bartels et al., or Example 3.1 in the article by Stanley. - David Radcliffe, Aug 02 2022
Number of labeled acyclic graphs on n vertices. The unlabeled version is A005195. The covering case is A105784, connected A000272. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of the a(4) = 38 forests:
  {}  {12}  {12,13}  {12,13,14}
      {13}  {12,14}  {12,13,24}
      {14}  {12,23}  {12,13,34}
      {23}  {12,24}  {12,14,23}
      {24}  {12,34}  {12,14,34}
      {34}  {13,14}  {12,23,24}
            {13,23}  {12,23,34}
            {13,24}  {12,24,34}
            {13,34}  {13,14,23}
            {14,23}  {13,14,24}
            {14,24}  {13,23,24}
            {14,34}  {13,23,34}
            {23,24}  {13,24,34}
            {23,34}  {14,23,24}
            {24,34}  {14,23,34}
                     {14,24,34}
(End)
		

References

  • B. Bollobas, Modern Graph Theory, Springer, 1998, p. 290.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272, rooted A000169.
The unlabeled version is A005195, connected A000055.
The covering case is A105784, unlabeled A144958.
Row sums of A138464.
For triangles instead of cycles we have A213434, covering A372168.
For a unique cycle we have A372193, covering A372195.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Maple
    exp(x+x^2+add(n^(n-2)*x^n/n!, n=3..50));
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*j^(j-2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 15 2008
    # third Maple program:
    F:= exp(-LambertW(-x)*(1+LambertW(-x)/2)):
    S:= series(F,x,51):
    seq(coeff(S,x,j)*j!, j=0..50); # Robert Israel, May 21 2015
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t-t^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
    nmax = 20; CoefficientList[Series[-LambertW[-x]/(x*E^(LambertW[-x]^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 19 2019 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n-1,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)) /* Michael Somos, Aug 22 2002 */

Formula

E.g.f.: exp( Sum_{n>=1} n^(n-2)*x^n/n! ). This implies (by a theorem of Wright) that a(n) ~ exp(1/2)*n^(n-2). - N. J. A. Sloane, May 12 2008 [Corrected by Philippe Flajolet, Aug 17 2008]
E.g.f.: exp(T - T^2/2), where T = T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is Euler's tree function (see A000169). - Len Smiley, Dec 12 2001
Shifts 1 place left under the hyperbinomial transform (cf. A088956). - Paul D. Hanna, Nov 03 2003
a(0) = 1, a(n) = Sum_{j=0..n-1} C(n-1,j) (j+1)^(j-1) a(n-1-j) if n>0. - Alois P. Heinz, Sep 15 2008

Extensions

More terms from Michael Somos, Aug 22 2002

A088957 Hyperbinomial transform of the sequence of 1's.

Original entry on oeis.org

1, 2, 6, 29, 212, 2117, 26830, 412015, 7433032, 154076201, 3608522954, 94238893883, 2715385121740, 85574061070045, 2928110179818478, 108110945014584623, 4284188833355367440, 181370804507130015569, 8169524599872649117330, 390114757072969964280163
Offset: 0

Views

Author

Paul D. Hanna, Oct 26 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions with no cycles of length > 1. The triangle A088956 classifies these functions according to the number of undefined elements in the domain. The triangle A144289 classifies these functions according to the number of edges in their digraph representation (considering the empty function to have 1 edge). The triangle A203092 classifies these functions according to the number of connected components. - Geoffrey Critzer, Dec 29 2011
a(n) is the number of rooted subtrees (for a fixed root) in the complete graph on n+1 vertices: a(3) = 29 is the number of rooted subtrees in K_4: 1 of size 1, 3 of size 2, 9 of size 3, and 16 spanning subtrees. - Alex Chin, Jul 25 2013 [corrected by Marko Riedel, Mar 31 2019]
From Gus Wiseman, Jan 28 2024: (Start)
Also the number of labeled loop-graphs on n vertices such that it is possible to choose a different vertex from each edge in exactly one way. For example, the a(3) = 29 uniquely choosable loop-graphs (loops shown as singletons) are:
{} {1} {1,2} {1,12} {1,2,13} {1,12,13}
{2} {1,3} {1,13} {1,2,23} {1,12,23}
{3} {2,3} {2,12} {1,3,12} {1,13,23}
{2,23} {1,3,23} {2,12,13}
{3,13} {2,3,12} {2,12,23}
{3,23} {2,3,13} {2,13,23}
{1,2,3} {3,12,13}
{3,12,23}
{3,13,23}
(End)

Examples

			a(5) = 2117 = 1296 + 625 + 160 + 30 + 5 + 1 = sum of row 5 of triangle A088956.
		

Crossrefs

Cf. A088956 (triangle).
Row sums of A144289. - Alois P. Heinz, Jun 01 2009
Column k=1 of A144303. - Alois P. Heinz, Oct 30 2012
The covering case is A000272, also the case of exactly n edges.
Without the choice condition we have A006125 (shifted left).
The unlabeled version is A087803.
The choosable version is A368927, covering A369140, loopless A133686.
The non-choosable version is A369141, covering A369142, loopless A367867.

Programs

  • Haskell
    a088957 = sum . a088956_row  -- Reinhard Zumkeller, Jul 07 2013
    
  • Maple
    a:= n-> add((n-j+1)^(n-j-1)*binomial(n,j), j=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 30 2012
  • Mathematica
    nn = 16; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
    Range[0, nn]! CoefficientList[Series[Exp[x] Exp[t], {x, 0, nn}], x]  (* Geoffrey Critzer, Dec 29 2011 *)
    With[{nmax = 50}, CoefficientList[Series[-LambertW[-x]*Exp[x]/x, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
  • PARI
    x='x+O('x^10); Vec(serlaplace(-lambertw(-x)*exp(x)/x)) \\ G. C. Greubel, Nov 14 2017

Formula

a(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k).
E.g.f.: A(x) = exp(x+sum(n>=1, n^(n-1)*x^n/n!)).
E.g.f.: -LambertW(-x)*exp(x)/x. - Vladeta Jovovic, Oct 27 2003
a(n) ~ exp(1+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
Binomial transform of A000272. - Gus Wiseman, Jan 25 2024

A009998 Triangle in which j-th entry in i-th row is (j+1)^(i-j).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 9, 4, 1, 1, 16, 27, 16, 5, 1, 1, 32, 81, 64, 25, 6, 1, 1, 64, 243, 256, 125, 36, 7, 1, 1, 128, 729, 1024, 625, 216, 49, 8, 1, 1, 256, 2187, 4096, 3125, 1296, 343, 64, 9, 1, 1, 512, 6561, 16384, 15625, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Keywords

Comments

Read as a square array this is the Hilbert transform of triangle A123125 (see A145905 for the definition of this term). For example, the fourth row of A123125 is (0,1,4,1) and the expansion (x + 4*x^2 + x^3)/(1-x)^4 = x + 8*x^2 + 27*x^3 + 64*x^4 + ... generates the entries in the fourth row of this array read as a square. - Peter Bala, Oct 28 2008

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  1;
  1,  4,  3,  1;
  1,  8,  9,  4,  1;
  1, 16, 27, 16,  5,  1;
  1, 32, 81, 64, 25,  6,  1;
  ...
From _Gus Wiseman_, May 01 2021: (Start)
The rows of the triangle are obtained by reading antidiagonals upward in the following table of A(k,n) = n^k, with offset k = 0, n = 1:
         n=1:     n=2:     n=3:     n=4:     n=5:     n=6:
   k=0:   1        1        1        1        1        1
   k=1:   1        2        3        4        5        6
   k=2:   1        4        9       16       25       36
   k=3:   1        8       27       64      125      216
   k=4:   1       16       81      256      625     1296
   k=5:   1       32      243     1024     3125     7776
   k=6:   1       64      729     4096    15625    46656
   k=7:   1      128     2187    16384    78125   279936
   k=8:   1      256     6561    65536   390625  1679616
   k=9:   1      512    19683   262144  1953125 10077696
  k=10:   1     1024    59049  1048576  9765625 60466176
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 24.

Crossrefs

Row sums give A026898.
Column n = 2 of the array is A000079.
Column n = 3 of the array is A000244.
Row k = 2 of the array is A000290.
Row k = 3 of the array is A000578.
Diagonal n = k of the array is A000312.
Diagonal n = k + 1 of the array is A000169.
Diagonal n = k + 2 of the array is A000272.
The transpose of the array is A009999.
The numbers of divisors of the entries are A343656 (row sums: A343657).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.

Programs

  • Haskell
    a009998 n k = (k + 1) ^ (n - k)
    a009998_row n = a009998_tabl !! n
    a009998_tabl = map reverse a009999_tabl
    -- Reinhard Zumkeller, Feb 02 2014
    
  • Maple
    E := (n,x) -> `if`(n=0,1,x*(1-x)*diff(E(n-1,x),x)+E(n-1,x)*(1+(n-1)*x));
    G := (n,x) -> E(n,x)/(1-x)^(n+1);
    A009998 := (n,k) -> coeff(series(G(n-k,x),x,18),x,k);
    seq(print(seq(A009998(n,k),k=0..n)),n=0..6);
    # Peter Luschny, Aug 02 2010
  • Mathematica
    Flatten[Table[(j+1)^(i-j),{i,0,20},{j,0,i}]] (* Harvey P. Dale, Dec 25 2012 *)
  • PARI
    T(i,j)=(j+1)^(i-j) \\ Charles R Greathouse IV, Feb 06 2017

Formula

T(n,n) = 1; T(n,k) = (k+1)*T(n-1,k) for k=0..n-1. - Reinhard Zumkeller, Feb 02 2014
T(n,m) = (m+1)*Sum_{k=0..n-m}((n+1)^(k-1)*(n-m)^(n-m-k)*(-1)^(n-m-k)*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Sep 12 2015

Extensions

a(62) corrected to 512 by T. D. Noe, Dec 20 2007

A138464 Triangle read by rows: T(n, k) is the number of forests on n labeled nodes with k edges. T(n, k) for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 1, 6, 15, 16, 1, 10, 45, 110, 125, 1, 15, 105, 435, 1080, 1296, 1, 21, 210, 1295, 5250, 13377, 16807, 1, 28, 378, 3220, 18865, 76608, 200704, 262144, 1, 36, 630, 7056, 55755, 320544, 1316574, 3542940, 4782969, 1, 45, 990, 14070, 143325, 1092105, 6258000, 26100000, 72000000, 100000000
Offset: 1

Views

Author

N. J. A. Sloane, May 09 2008

Keywords

Comments

The rows of the triangle give the coefficients of the Ehrhart polynomials of integral Coxeter permutahedra of type A. These polynomials count lattice points in a dilated lattice polytope. For a definition see Ardila et al. (p. 1158), the generating functions of these polynomials for the classical root systems are given in theorem 5.2 (p. 1163). - Peter Luschny, May 01 2021

Examples

			Triangle begins:
[1]  1;
[2]  1,  1;
[3]  1,  3,   3;
[4]  1,  6,  15,   16;
[5]  1, 10,  45,  110,  125;
[6]  1, 15, 105,  435, 1080,  1296;
[7]  1, 21, 210, 1295, 5250, 13377, 16807;
		

Crossrefs

Row sums give A001858. Rightmost diagonal gives A000272. Cf. A136605.
Rows reflected give A105599. - Alois P. Heinz, Oct 28 2011
Cf. A088956.
Lower diagonals give: A083483, A239910, A240681, A240682, A240683, A240684, A240685, A240686, A240687. - Alois P. Heinz, Apr 11 2014
T(2n,n) gives A302112.
For Ehrhart polynomials of integral Coxeter permutahedra of classical type cf. this sequence (type A), A343805 (type B), A343806 (type C), A343807 (type D).

Programs

  • Maple
    T:= proc(n) option remember; if n=0 then 0 else T(n-1) +n^(n-1) *x^n/n! fi end: TT:= proc(n) option remember; expand(T(n) -T(n)^2/2) end: f:= proc(k) option remember; if k=0 then 1 else unapply(f(k-1)(x) +x^k/k!, x) fi end: A:= proc(n,k) option remember; series(f(k)(TT(n)), x,n+1) end: aa:= (n,k)-> coeff(A(n,k), x,n) *n!: a:= (n,k)-> aa(n,n-k) -aa(n,n-k-1): seq(seq(a(n,k), k=0..n-1), n=1..10);  # Alois P. Heinz, Sep 02 2008
    alias(W = LambertW): EhrA := exp(-W(-t*x)/t - W(-t*x)^2/(2*t)):
    ser := series(EhrA, x, 12): cx := n -> n!*coeff(ser, x, n):
    T := n -> seq(coeff(cx(n), t, k), k=0..n-1):
    seq(T(n), n = 1..10); # Peter Luschny, Apr 30 2021
  • Mathematica
    t[0, 0] = 1; t[n_ /; n >= 1, k_] /; (0 <= k <= n-1) := t[n, k] = Sum[(i+1)^(i-1)*Binomial[n-1, i]*t[n-i-1, k-i], {i, 0, k}]; t[, ] = 0; Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Peter Bala *)
    gf := E^(-(ProductLog[-(t x)] (2 + ProductLog[-(t x)]))/(2 t));
    ser := Series[gf, {x, 0, 12}]; cx[n_] := n! Coefficient[ser, x, n];
    Table[CoefficientList[cx[n], t], {n, 1, 10}] // Flatten  (* Peter Luschny, May 01 2021 *)

Formula

From Peter Bala, Aug 14 2012: (Start)
T(n+1,k) = Sum_{i=0..k} (i+1)^(i-1)*binomial(n,i)*T(n-i,k-i) with T(0,0)=1.
Recurrence equation for row polynomials R(n,t): R(n,t) = Sum_{k=0..n-1} (k+1)^(k-1)*binomial(n-1,k)*t^k*R(n-k-1,t) with R(0,t) = R(1,t) = 1.
The production matrix for the row polynomials of the triangle is obtained from A088956 and starts:
1 t
1 1 t
3 2 1 t
16 9 3 1 t
125 64 18 4 1 t
(End)
E.g.f.: exp( Sum_{n >= 1} n^(n-2)*t^(n-1)*x^n/n! ). - Peter Bala, Nov 08 2015
T(n, k) = [t^k] n! [x^n] exp(-W(-t*x)/t - W(-t*x)^2/(2*t)), where W denotes the Lambert function. - Peter Luschny, Apr 30 2021 [Typo corrected after note from Andrew Howroyd, Peter Luschny, Jun 20 2021]

Extensions

More terms from Alois P. Heinz, Sep 02 2008

A144303 Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on the sequence of 1's.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 29, 1, 1, 5, 22, 81, 212, 1, 1, 6, 33, 163, 689, 2117, 1, 1, 7, 46, 281, 1564, 7553, 26830, 1, 1, 8, 61, 441, 2993, 18679, 101961, 412015, 1, 1, 9, 78, 649, 5156, 38705, 268714, 1639529, 7433032, 1, 1, 10, 97, 911, 8257, 71801, 592489, 4538209, 30640257, 154076201, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 17 2008, revised Oct 30 2012

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
A(n,m), n>=0, m>=0, is the number of subtrees of the complete graph K_{n+m} on n+m vertices containing a given, fixed subtree on m vertices. - Alex Chin, Jul 25 2013

Examples

			Square array begins:
  1,     1,      1,      1,      1,       1,       1, ...
  1,     2,      3,      4,      5,       6,       7, ...
  1,     6,     13,     22,     33,      46,      61, ...
  1,    29,     81,    163,    281,     441,     649, ...
  1,   212,    689,   1564,   2993,    5156,    8257, ...
  1,  2117,   7553,  18679,  38705,   71801,  123217, ...
  1, 26830, 101961, 268714, 592489, 1166886, 2120545, ...
		

Crossrefs

Rows n=0-2 give: A000012, A000027, A028872.
Main diagonal gives A252766.

Programs

  • Maple
    hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(
               p(k)*binomial(n, k) *(n-k+m)^(n-k-1), k=0..n))
            end end:
    A:= hymtr(1):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = 1; a[n, k_] := Sum[k*(n - j + k)^(n - j - 1)*Binomial[n, j], {j, 0, n}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)

Formula

E.g.f. of column k: exp(x) * (-LambertW(-x)/x)^k.
A(n,k) = Sum_{j=0..n} k * (n-j+k)^(n-j-1) * C(n,j).

A071207 Triangular array T(n,k) read by rows, giving number of rooted trees on the vertex set {1..n+1} where k children of the root have a label smaller than the label of the root.

Original entry on oeis.org

1, 1, 1, 4, 4, 1, 27, 27, 9, 1, 256, 256, 96, 16, 1, 3125, 3125, 1250, 250, 25, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 823543, 823543, 352947, 84035, 12005, 1029, 49, 1, 16777216, 16777216, 7340032, 1835008, 286720, 28672, 1792, 64, 1, 387420489
Offset: 0

Views

Author

Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002

Keywords

Comments

The n-th term of the n-th binomial transform of a sequence {b} is given by {d} where d(n) = sum(k=0,n,T(n,k)*b(k)) and T(n,k)=binomial(n,k)*n^(n-k); such diagonals are related to the hyperbinomial transform (A088956). - Paul D. Hanna, Nov 04 2003
T(n,k) gives the number of divisors of A181555(n) with (n-k) distinct prime factors. See also A001221, A146289, A146290, A181567. - Matthew Vandermast, Oct 31 2010
T(n,k) is the number of partial functions on {1,2,...,n} leaving exactly k elements undefined. Row sums = A000169. - Geoffrey Critzer, Jan 08 2012
As a triangular matrix, transforms rows into diagonals in the table of coefficients of successive iterations of x/(1-x). - Paul D. Hanna, Jan 19 2014
Also the number of rooted trees on n+1 labeled vertices in which some specified vertex (say, vertex 1) has k children. - Alan Sokal, Jul 22 2022

Examples

			1
1     1
4     4     1
27    27    9     1
256   256   96    16    1
3125  3125  1250  250   25    1
46656 46656 19440 4320  540   36    1
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*n^(n-k): seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    Prepend[Flatten[ Table[Table[Binomial[n, k] n^(n - k), {k, 0, n}], {n, 1, 8}]], 1]  (* Geoffrey Critzer, Jan 08 2012 *)
  • PARI
    T(n,k)=if(k<0 || k>n,0,binomial(n,k)*n^(n-k))
    
  • PARI
    /* Transforms rows into diagonals in the iterations of x/(1-x): */
    {T(n, k)=local(F=x, M, N, P, m=n); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, F=x; for(i=1, r, F=subst(F, x, x/(1-x+x*O(x^(m+2))))); polcoeff(F, c)); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Jan 19 2014

Formula

T(n,k) = binomial(n, k)*n^(n-k).
E.g.f.: (-LambertW(-y)/y)^x/(1+LambertW(-y)). - Vladeta Jovovic

Extensions

Name edited by Alan Sokal, Jul 22 2022

A089466 Inverse hyperbinomial transform of A089467.

Original entry on oeis.org

1, 1, 3, 18, 163, 1950, 28821, 505876, 10270569, 236644092, 6098971555, 173823708696, 5427760272507, 184267682837992, 6757353631762293, 266191329601854000, 11210291102456374801, 502602430218071545104, 23900770928782913595651, 1201581698963550283673632
Offset: 0

Views

Author

Paul D. Hanna, Nov 08 2003

Keywords

Comments

See A088956 for the definition of the hyperbinomial transform.
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that the functional digraph contains no cycles of length 2. - Geoffrey Critzer, Mar 21 2012

Crossrefs

Programs

  • Mathematica
    nn=20; t=Sum[n^(n-1)x^n/n!,{n,1,nn}]; a=Log[1/(1-t)]; Range[0,nn]! CoefficientList[Series[Exp[a-t^2/2], {x,0,nn}], x] (* Geoffrey Critzer, Mar 21 2012 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j)*(n-1)^(n-m-j)*(m+j)!/(-2)^j)/m!))
    
  • PARI
    a(n) = n! * sum(k=0, n\2, (-1/2)^k * n^(n - 2*k) / (k! * (n - 2*k)!)); \\ Daniel Suteu, Jun 19 2018

Formula

A089467(n) = Sum_{k=0..n} (n-k+1)^(n-k-1)*C(n, k)*a(k).
a(n) = Sum_{m=0..n} (Sum_{j=0..m} C(m, j)*C(n, n-m-j)*(n-1)^(n-m-j)*(m+j)!/(-2)^j)/m!.
E.g.f.: exp(-(T(x))^2/2)/(1-T(x)), where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Mar 21 2012
a(n) ~ exp(-1/2) * n^n. - Vaclav Kotesovec, Oct 08 2013
a(n) = n! * Sum_{k=0..floor(n/2)} (-1/2)^k * n^(n - 2*k) / (k! * (n - 2*k)!). - Daniel Suteu, Jun 19 2018

A236961 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of g.f. of A236960 such that column 0 equals T(n,0) = n^n.

Original entry on oeis.org

1, 1, 1, 4, 2, 1, 27, 11, 3, 1, 256, 94, 21, 4, 1, 3125, 1076, 217, 34, 5, 1, 46656, 15362, 2910, 412, 50, 6, 1, 823543, 262171, 47598, 6333, 695, 69, 7, 1, 16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1, 387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1, 10000000000
Offset: 0

Views

Author

Paul D. Hanna, Feb 01 2014

Keywords

Examples

			This triangle begins:
1;
1, 1;
4, 2, 1;
27, 11, 3, 1;
256, 94, 21, 4, 1;
3125, 1076, 217, 34, 5, 1;
46656, 15362, 2910, 412, 50, 6, 1;
823543, 262171, 47598, 6333, 695, 69, 7, 1;
16777216, 5198778, 915221, 116768, 12045, 1082, 91, 8, 1;
387420489, 117368024, 20182962, 2498414, 247151, 20871, 1589, 116, 9, 1;
10000000000, 2970653234, 501463686, 60678776, 5824330, 471666, 33761, 2232, 144, 10, 1; ...
in which column 0 equals T(n,0) = n^n.
ILLUSTRATION.
This triangle transforms diagonals in the table of coefficients in the iterations of G(x), the g.f. of A236960, that starts as:
G(x) = x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 79*x^6 + 720*x^7 + 10735*x^8 + 211802*x^9 + 4968491*x^10 + 132655760*x^11 + 3943593218*x^12 +...
The table of coefficients in the successive iterations of G(x) begins:
[1,  0,   0,    0,     0,      0,       0,        0,         0, ...];
[1,  1,   2,    5,    16,     79,     720,    10735,    211802, ...];
[1,  2,   6,   21,    84,    410,    2876,    33235,    581074, ...];
[1,  3,  12,   54,   266,   1463,    9740,    90999,   1308954, ...];
[1,  4,  20,  110,   648,   4102,   28932,   248808,   2972926, ...];
[1,  5,  30,  195,  1340,   9705,   75264,   655599,   7059436, ...];
[1,  6,  42,  315,  2476,  20284,  174304,  1610487,  16952240, ...];
[1,  7,  56,  476,  4214,  38605,  366660,  3656975,  39586868, ...];
[1,  8,  72,  684,  6736,  68308,  712984,  7710392,  88021908, ...];
[1,  9,  90,  945, 10248, 114027, 1299696, 15223599, 185218134, ...];
[1, 10, 110, 1265, 14980, 181510, 2245428, 28396003, 369356822, ...]; ...
Then this triangle T transforms the adjacent diagonals in the above table into each other, as illustrated by:
T*[1, 1,  6,  54,  648,  9705, 174304, 3656975,  88021908, ...]
= [1, 2, 12, 110, 1340, 20284, 366660, 7710392, 185218134, ...];
T*[1, 2, 12, 110, 1340, 20284, 366660,  7710392, 185218134, ...]
= [1, 3, 20, 195, 2476, 38605, 712984, 15223599, 369356822, ...];
T*[1, 3, 20, 195, 2476, 38605,  712984, 15223599, 369356822, ...]
= [1, 4, 30, 315, 4214, 68308, 1299696, 28396003, 701068918, ...]; ...
RELATED TRIANGLE.
Compare this triangle to the triangle A088956(n,k) = (n-k+1)^(n-k-1)*C(n,k), that transforms diagonals in the table of coefficients in the iterations of x/(1-x):
1;
1, 1;
3, 2, 1;
16, 9, 3, 1;
125, 64, 18, 4, 1;
1296, 625, 160, 30, 5, 1;
16807, 7776, 1875, 320, 45, 6, 1; ...
		

Crossrefs

Cf. variants: A233531, A088956.

Programs

  • PARI
    /* From Root Series G, Calculate T(n,k) of Triangle: */
    {T(n, k) = my(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
    for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
    N=matrix(m+1, m+1, r, c, M[r, c]);
    P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
    /* Calculates Root Series G and then Prints ROWS of Triangle: */
    {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, ");
    for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V));
    for(n=0,#V-1,if(n==#V-1,V[#V]=n^n-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
    print1("...]");print("");print("");print("Triangle begins:");
    for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}

A089463 Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform.

Original entry on oeis.org

1, 3, 1, 15, 6, 1, 108, 45, 9, 1, 1029, 432, 90, 12, 1, 12288, 5145, 1080, 150, 15, 1, 177147, 73728, 15435, 2160, 225, 18, 1, 3000000, 1240029, 258048, 36015, 3780, 315, 21, 1, 58461513, 24000000, 4960116, 688128, 72030, 6048, 420, 24, 1, 1289945088
Offset: 0

Views

Author

Paul D. Hanna, Nov 05 2003

Keywords

Comments

Equals the matrix cube of A088956 when treated as a lower triangular matrix. The 3rd hyperbinomial transform of a sequence {b} is defined to be the sequence {d} given by d(n) = Sum_{k=0..n} T(n,k)*b(k), where T(n,k) = 3*(n-k+3)^(n-k-1)*C(n,k). Given a table in which the n-th row is the n-th binomial transform of the first row, then the 3rd hyperbinomial transform of any diagonal results in the 3rd diagonal lower in the table.

Examples

			Rows begin:
  {1},
  {3,1},
  {15,6,1},
  {108,45,9,1},
  {1029,432,90,12,1},
  {12288,5145,1080,150,15,1},
  {177147,73728,15435,2160,225,18,1},
  {3000000,1240029,258048,36015,3780,315,21,1},..
		

Crossrefs

Cf. A089464(row sums), A089465(diagonal), A089460, A088956.

Programs

  • Mathematica
    Flatten[Table[3(n-k+3)^(n-k-1) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 26 2013 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(3*(n-k+3)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 17 2017

Formula

T(n, k) = 3*(n-k+3)^(n-k-1)*C(n, k).
E.g.f.: exp(x*y)*(-LambertW(-y)/y)^3.
Note: (-LambertW(-y)/y)^3 = Sum_{n>=0} 3*(n+3)^(n-1)*y^n/n!.
Showing 1-10 of 29 results. Next