A088957
Hyperbinomial transform of the sequence of 1's.
Original entry on oeis.org
1, 2, 6, 29, 212, 2117, 26830, 412015, 7433032, 154076201, 3608522954, 94238893883, 2715385121740, 85574061070045, 2928110179818478, 108110945014584623, 4284188833355367440, 181370804507130015569, 8169524599872649117330, 390114757072969964280163
Offset: 0
a(5) = 2117 = 1296 + 625 + 160 + 30 + 5 + 1 = sum of row 5 of triangle A088956.
The covering case is
A000272, also the case of exactly n edges.
Without the choice condition we have
A006125 (shifted left).
Cf.
A000081,
A000085,
A057500,
A062740,
A137916,
A277473,
A322661,
A367904,
A368596,
A368597,
A368924.
-
a088957 = sum . a088956_row -- Reinhard Zumkeller, Jul 07 2013
-
a:= n-> add((n-j+1)^(n-j-1)*binomial(n,j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
nn = 16; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}];
Range[0, nn]! CoefficientList[Series[Exp[x] Exp[t], {x, 0, nn}], x] (* Geoffrey Critzer, Dec 29 2011 *)
With[{nmax = 50}, CoefficientList[Series[-LambertW[-x]*Exp[x]/x, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 14 2017 *)
-
x='x+O('x^10); Vec(serlaplace(-lambertw(-x)*exp(x)/x)) \\ G. C. Greubel, Nov 14 2017
A089461
Hyperbinomial transform of A088957. Also the row sums of triangle A089460, which lists the coefficients for the second hyperbinomial transform.
Original entry on oeis.org
1, 3, 13, 81, 689, 7553, 101961, 1639529, 30640257, 653150529, 15649353929, 416495026841, 12193949444193, 389572905351425, 13488730646528265, 503205102139969977, 20123584054543823105, 858863606297804378753, 38967500492977755457161, 1872974608860684814735385
Offset: 0
-
a:= n-> add(2*(n-j+2)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
CoefficientList[Series[E^x*(-LambertW[-x]/x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^2)) \\ G. C. Greubel, Nov 16 2017
A089464
Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.
Original entry on oeis.org
1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
Offset: 0
-
a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n,j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
Table[Sum[3(n-k+3)^(n-k-1) Binomial[n,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Dec 04 2011 *)
CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017
A218496
4th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 5, 33, 281, 2993, 38705, 592489, 10516441, 212841889, 4845154913, 122664558905, 3421333467689, 104297273041969, 3451364116327249, 123251578626936841, 4725537745859375705, 193647372258547916609, 8447809104669814884545, 390938955429073736493145
Offset: 0
A218497
5th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 6, 46, 441, 5156, 71801, 1166886, 21756251, 458803176, 10814534541, 282098765426, 8074875680471, 251807768368956, 8501320507058801, 309046115586282726, 12039399243732745851, 500492026353038459216, 22119195334250297991701, 1035767312348853244634586
Offset: 0
-
a:= n-> add(5*(n-j+5)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[5*(n-j+5)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218498
6th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 7, 61, 649, 8257, 123217, 2120545, 41484625, 911339617, 22249542241, 598364232529, 17591851634353, 561695417002225, 19366094448215665, 717377453802538753, 28423991158962139873, 1199873992182732076225, 53772852099331738315969, 2550272224743737587911025
Offset: 0
-
a:= n-> add(6*(n-j+6)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[6*(n-j+6)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218499
7th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 8, 78, 911, 12524, 199403, 3624706, 74300269, 1699264792, 42964199279, 1191492782054, 35994106307321, 1177389200637028, 41482632276082915, 1566911405137366450, 63190697224460246477, 2710704012199936430000, 123277690401078017104343, 5925900498827152433216446
Offset: 0
-
a:= n-> add(7*(n-j+7)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[7*(n-j+7)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218500
8th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 9, 97, 1233, 18209, 308129, 5901489, 126560849, 3010775745, 78805945665, 2253470828561, 69959985025841, 2345132738183841, 84468280694319713, 3254988169237833585, 133676275015986223569, 5830402582814375609729, 269227430712934320151169
Offset: 0
-
a:= n-> add(8*(n-j+8)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[8*(n-j+8)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
With[{nn=20},CoefficientList[Series[Exp[x](-LambertW[-x]/x)^8,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 04 2019 *)
A218501
9th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 10, 118, 1621, 25588, 458605, 9232894, 206835751, 5113191304, 138473150833, 4081818946330, 130223467785619, 4473867764956204, 164772507070721989, 6479598382677480286, 271083794667222927655, 12026359894442420178064, 564099525344446492486105
Offset: 0
-
a:= n-> add(9*(n-j+9)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[9*(n-j+9)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
A218502
10th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 11, 141, 2081, 34961, 661601, 13970521, 326429401, 8377176001, 234573153281, 7125155956601, 233554674134441, 8223284332647361, 309711995280132001, 12430859603012736601, 529915231307371964201, 23918971999180778999681, 1139982481554110359552001
Offset: 0
-
a:= n-> add(10*(n-j+10)^(n-j-1)*binomial(n,j), j=0..n):
seq (a(n), n=0..20);
-
Table[Sum[10*(n-j+10)^(n-j-1)*Binomial[n,j],{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 18 2013 *)
Showing 1-10 of 11 results.
Comments