A089464
Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.
Original entry on oeis.org
1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
Offset: 0
-
a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n,j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
Table[Sum[3(n-k+3)^(n-k-1) Binomial[n,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Dec 04 2011 *)
CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017
A144303
Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on the sequence of 1's.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 29, 1, 1, 5, 22, 81, 212, 1, 1, 6, 33, 163, 689, 2117, 1, 1, 7, 46, 281, 1564, 7553, 26830, 1, 1, 8, 61, 441, 2993, 18679, 101961, 412015, 1, 1, 9, 78, 649, 5156, 38705, 268714, 1639529, 7433032, 1, 1, 10, 97, 911, 8257, 71801, 592489, 4538209, 30640257, 154076201, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 13, 22, 33, 46, 61, ...
1, 29, 81, 163, 281, 441, 649, ...
1, 212, 689, 1564, 2993, 5156, 8257, ...
1, 2117, 7553, 18679, 38705, 71801, 123217, ...
1, 26830, 101961, 268714, 592489, 1166886, 2120545, ...
Columns m=0-10 give:
A000012,
A088957,
A089461,
A089464,
A218496,
A218497,
A218498,
A218499,
A218500,
A218501,
A218502.
-
hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(
p(k)*binomial(n, k) *(n-k+m)^(n-k-1), k=0..n))
end end:
A:= hymtr(1):
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
a[, 0] = 1; a[n, k_] := Sum[k*(n - j + k)^(n - j - 1)*Binomial[n, j], {j, 0, n}]; Table[a[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jun 24 2013 *)
A089460
Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 50, 24, 6, 1, 432, 200, 48, 8, 1, 4802, 2160, 500, 80, 10, 1, 65536, 28812, 6480, 1000, 120, 12, 1, 1062882, 458752, 100842, 15120, 1750, 168, 14, 1, 20000000, 8503056, 1835008, 268912, 30240, 2800, 224, 16, 1, 428717762, 180000000, 38263752, 5505024, 605052, 54432, 4200, 288, 18, 1
Offset: 0
Rows begin:
{1},
{2,1},
{8,4,1},
{50,24,6,1},
{432,200,48,8,1},
{4802,2160,500,80,10,1},
{65536,28812,6480,1000,120,12,1},
{1062882,458752,100842,15120,1750,168,14,1},..
-
Join[{1}, Table[Binomial[n, k]*2*(n - k + 2)^(n - k - 1), {n, 1, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
for(n=0,10, for(k=0,n, print1(2*(n-k+2)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 18 2017
A362522
a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, 3, 7, 49, 201, 2491, 14743, 266337, 2055889, 49051891, 466650471, 13873711633, 156839920537, 5591748678699, 73222243463671, 3046762637864641, 45346835284775073, 2158148557098011107, 35980450963558606279, 1928292118820446611441
Offset: 0
Showing 1-4 of 4 results.
Comments