A362523 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (k! * (n-3*k)!).
1, 1, 1, 7, 25, 61, 1201, 7771, 30577, 1058905, 9904321, 53722351, 2708688841, 33126146197, 228967340785, 15262865820931, 230517745701601, 1936173471789361, 161021598306402817, 2894434429492525015, 28614958982310290041
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..427
- Eric Weisstein's World of Mathematics, Lambert W-Function.
Programs
-
PARI
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3))))
Formula
E.g.f.: exp(x - LambertW(-x^3)) = -LambertW(-x^3)/x^3 * exp(x).
a(n) ~ sqrt(3) * (exp(3*exp(-1/3)/2) + 2*cos(sqrt(3)*exp(-1/3)/2 - 2*Pi*n/3)) * n^(n-1) / exp(2*n/3 + exp(-1/3)/2 - 1). - Vaclav Kotesovec, Aug 05 2025