cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A362522 a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (k! * (n-2*k)!).

Original entry on oeis.org

1, 1, 3, 7, 49, 201, 2491, 14743, 266337, 2055889, 49051891, 466650471, 13873711633, 156839920537, 5591748678699, 73222243463671, 3046762637864641, 45346835284775073, 2158148557098011107, 35980450963558606279, 1928292118820446611441
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^2))))

Formula

E.g.f.: exp(x - LambertW(-x^2)) = -LambertW(-x^2)/x^2 * exp(x).
a(n) ~ sqrt(2) * (exp(2*exp(-1/2)) + (-1)^n) * n^(n-1) / exp(n/2 + exp(-1/2) - 1). - Vaclav Kotesovec, Aug 05 2025

A361917 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (k+1)^(k-1) / (k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, -5, -23, -59, 961, 7351, 29905, -877463, -9450719, -52724429, 2282907001, 31742360365, 225092745697, -12992587010129, -221436656404319, -1905297800257199, 137972958868569025, 2784953660339878507, 28177036295775415561, -2459373614334806266859
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(x^3))))

Formula

E.g.f.: exp(x - LambertW(x^3)) = LambertW(x^3)/x^3 * exp(x).

A362525 a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (6^k * k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 51, 246, 897, 7085, 51221, 260426, 2938541, 28279967, 184234415, 2714662406, 32614422401, 259026339161, 4721237878537, 67998862785970, 637019875964341, 13852253151455251, 232584488748665131, 2510358957337412182, 63466995535914172225
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^3/6))))

Formula

E.g.f.: exp(x - LambertW(-x^3/6)) = -6 * LambertW(-x^3/6)/x^3 * exp(x).
Showing 1-3 of 3 results.