A089461 Hyperbinomial transform of A088957. Also the row sums of triangle A089460, which lists the coefficients for the second hyperbinomial transform.
1, 3, 13, 81, 689, 7553, 101961, 1639529, 30640257, 653150529, 15649353929, 416495026841, 12193949444193, 389572905351425, 13488730646528265, 503205102139969977, 20123584054543823105, 858863606297804378753, 38967500492977755457161, 1872974608860684814735385
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
Crossrefs
Column k=2 of A144303. - Alois P. Heinz, Oct 30 2012
Programs
-
Maple
a:= n-> add(2*(n-j+2)^(n-j-1)*binomial(n,j), j=0..n): seq (a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
Mathematica
CoefficientList[Series[E^x*(-LambertW[-x]/x)^2, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
PARI
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^2)) \\ G. C. Greubel, Nov 16 2017
Formula
a(n) = Sum_{k=0..n} 2*(n-k+2)^(n-k-1)*C(n, k).
E.g.f.: exp(x)*(-LambertW(-x)/x)^2.
a(n) ~ 2*exp(2+exp(-1))*n^(n-1). - Vaclav Kotesovec, Jul 08 2013
Comments