A089464
Hyperbinomial transform of A089461. Also the row sums of triangle A089463, which lists the coefficients for the third hyperbinomial transform.
Original entry on oeis.org
1, 4, 22, 163, 1564, 18679, 268714, 4538209, 88188280, 1940666635, 47744244286, 1299383450941, 38777402351476, 1259552677645903, 44247546748659130, 1671904534990870369, 67624237153933934704, 2915628368081840175379, 133499617770334938670198
Offset: 0
-
a:= n-> add(3*(n-j+3)^(n-j-1)*binomial(n,j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Oct 30 2012
-
Table[Sum[3(n-k+3)^(n-k-1) Binomial[n,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Dec 04 2011 *)
CoefficientList[Series[E^x*(-LambertW[-x]/x)^3, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 08 2013 *)
-
x='x+O('x^50); Vec(serlaplace(exp(x)*(-lambertw(-x)/x)^3)) \\ G. C. Greubel, Nov 16 2017
A058127
Triangle read by rows: T(j,k) is the number of acyclic functions from {1,...,j} to {1,...,k}. For n >= 1, a(n) = (k-j)*k^(j-1), where k is such that C(k,2) < n <= C(k+1,2) and j = (n-1) mod C(k,2). Alternatively, table T(k,j) read by antidiagonals with k >= 1, 0 <= j <= k: T(k,j) = number of acyclic-function digraphs on k vertices with j vertices of outdegree 1 and (k-j) vertices of outdegree 0; T(k,j) = (k-j)*k^(j-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 8, 16, 1, 4, 15, 50, 125, 1, 5, 24, 108, 432, 1296, 1, 6, 35, 196, 1029, 4802, 16807, 1, 7, 48, 320, 2048, 12288, 65536, 262144, 1, 8, 63, 486, 3645, 26244, 177147, 1062882, 4782969, 1, 9, 80, 700, 6000, 50000, 400000, 3000000, 20000000, 100000000
Offset: 1
a(6) = T(3,2) = 3 because there are 3 acyclic functions from {1,2} to {1,2,3}: {(1,2),(2,3)}, {(1,3),(2,3)} and {(1,3),(2,1)}.
Triangle begins:
1;
1, 1;
1, 2, 3;
1, 3, 8, 16;
1, 4, 15, 50, 125;
1, 5, 24, 108, 432, 1296;
1, 6, 35, 196, 1029, 4802, 16807;
1, 7, 48, 320, 2048, 12288, 65536, 262144;
...
- T. D. Noe, Rows n = 1..50 of triangle, flattened
- Richard Kenyon and Mei Yin, Parking functions: From combinatorics to probability, arXiv:2103.17180 [math.CO] (2021).
- Henri Mühle, Ballot-Noncrossing Partitions, Proceedings of the 31st Conference on Formal Power Series and Algebraic Combinatorics (Ljubljana), Séminaire Lotharingien de Combinatoire (2019) Vol. 82B, Article #7.
- Jim Pitman and Richard P. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27: 603-634 (2002).
- D. P. Walsh, Notes on acyclic functions and their directed graphs
The sum of antidiagonals is
A058128. The sequence b(n) = T(n, n-1) for n >= 1 is
A000272, labeled trees on n nodes.
The sequence c(n) = T(n, n-2) for n >= 2 is
A007334(n). The sequence d(n) = T(n, n-3) for n >= 3 is
A089463(n-3,0). -
Peter Luschny, Apr 22 2009
-
/* As triangle */ [[(n-k)*n^(k-1): k in [0..n-1]]: n in [1.. 10]]; // Vincenzo Librandi, Aug 11 2017
-
T := proc(n,k) (n-k)*n^(k-1) end; seq(print(seq(T(n,k),k=0..n-1)),n=1..9); # Peter Luschny, Jan 14 2009
-
t[n_, k_] := (n-k)*n^(k-1); Table[t[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Dec 03 2013 *)
-
{T(n, k) = if( k<0 || k>n, 0, n==0, 1, (n-k) * n^(k-1))}; /* Michael Somos, Sep 20 2017 */
A089460
Triangle, read by rows, of coefficients for the second iteration of the hyperbinomial transform.
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 50, 24, 6, 1, 432, 200, 48, 8, 1, 4802, 2160, 500, 80, 10, 1, 65536, 28812, 6480, 1000, 120, 12, 1, 1062882, 458752, 100842, 15120, 1750, 168, 14, 1, 20000000, 8503056, 1835008, 268912, 30240, 2800, 224, 16, 1, 428717762, 180000000, 38263752, 5505024, 605052, 54432, 4200, 288, 18, 1
Offset: 0
Rows begin:
{1},
{2,1},
{8,4,1},
{50,24,6,1},
{432,200,48,8,1},
{4802,2160,500,80,10,1},
{65536,28812,6480,1000,120,12,1},
{1062882,458752,100842,15120,1750,168,14,1},..
-
Join[{1}, Table[Binomial[n, k]*2*(n - k + 2)^(n - k - 1), {n, 1, 49}, {k, 0, n}]] // Flatten (* G. C. Greubel, Nov 18 2017 *)
-
for(n=0,10, for(k=0,n, print1(2*(n-k+2)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 18 2017
A089465
3rd hyperbinomial transform of A001858; also the hyperbinomial transform of A089462.
Original entry on oeis.org
1, 4, 23, 178, 1763, 21504, 313585, 5342068, 104376201, 2304582544, 56807530871, 1547599725720, 46202052688603, 1500629138909632, 52697989385197137, 1990117967149595824, 80440669725095395025, 3465573101368534916928
Offset: 0
-
Table[Sum[Sum[Binomial[m, j]*Binomial[n, n - m - j + 1]*(n + 3)^(n - m - j + 1)*(m + j)!/(-2)^j, {j, 0, m}]/m!, {m, 0, n + 1}], {n, 0, 50}] (* G. C. Greubel, Nov 18 2017 *)
-
a(n)=if(n<0,0,sum(m=0,n+1,sum(j=0,m,binomial(m,j)*binomial(n,n-m-j+1)*(n+3)^(n-m-j+1)*(m+j)!/(-2)^j)/m!))
Showing 1-4 of 4 results.
Comments