A089463
Triangle, read by rows, of coefficients for the third iteration of the hyperbinomial transform.
Original entry on oeis.org
1, 3, 1, 15, 6, 1, 108, 45, 9, 1, 1029, 432, 90, 12, 1, 12288, 5145, 1080, 150, 15, 1, 177147, 73728, 15435, 2160, 225, 18, 1, 3000000, 1240029, 258048, 36015, 3780, 315, 21, 1, 58461513, 24000000, 4960116, 688128, 72030, 6048, 420, 24, 1, 1289945088
Offset: 0
Rows begin:
{1},
{3,1},
{15,6,1},
{108,45,9,1},
{1029,432,90,12,1},
{12288,5145,1080,150,15,1},
{177147,73728,15435,2160,225,18,1},
{3000000,1240029,258048,36015,3780,315,21,1},..
-
Flatten[Table[3(n-k+3)^(n-k-1) Binomial[n,k],{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 26 2013 *)
-
for(n=0,10, for(k=0,n, print1(3*(n-k+3)^(n-k-1)*binomial(n,k), ", "))) \\ G. C. Greubel, Nov 17 2017
A144304
Square array A(n,m), n>=0, m>=0, read by antidiagonals: A(n,m) = n-th number of the m-th iteration of the hyperbinomial transform on sequence A001858.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 7, 7, 1, 4, 14, 38, 38, 1, 5, 23, 93, 291, 291, 1, 6, 34, 178, 822, 2932, 2932, 1, 7, 47, 299, 1763, 9193, 36961, 36961, 1, 8, 62, 462, 3270, 21504, 125292, 561948, 561948, 1, 9, 79, 673, 5523, 43135, 313585, 2022555, 10026505, 10026505, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, ...
2, 7, 14, 23, 34, ...
7, 38, 93, 178, 299, ...
38, 291, 822, 1763, 3270, ...
-
hymtr:= proc(p) proc(n,m) `if`(m=0, p(n), m*add(p(k) *binomial(n, k) *(n-k+m)^(n-k-1), k=0..n)) end end: f:= proc(n) option remember; add(add(binomial(m, j) *binomial(n-1, n-m-j) *n^(n-m-j) *(m+j)!/ (-2)^j/ m!, j=0..m), m=0..n) end: A:= hymtr(f): seq(seq(A(n, d-n), n=0..d), d=0..12);
-
hymtr[p_] := Function[{n, m}, If[m == 0, p[n], m*Sum[p[k]*Binomial[n, k]*(n-k+m)^(n-k-1), {k, 0, n}]]]; f[0] = 1; f[n_] := f[n] = Sum[Sum[Binomial[m, j]*Binomial[n-1, n-m-j]*n^(n-m-j)*(m+j)!/(-2)^j/m!, {j, 0, m}], {m, 0, n}]; A[0, ] = 1; A[1, k] := k+1; A[n_, m_] := hymtr[f][n, m]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
Showing 1-2 of 2 results.
Comments