A045492 Convolution of A000108 (Catalan numbers) with A020920.
1, 19, 218, 1955, 15086, 105102, 679764, 4154403, 24281510, 136887322, 749032492, 3997228430, 20880823820, 107088473660, 540472210728, 2689562860323, 13217998697430, 64240718824930, 309108505173820
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..20], n-> Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5))); # G. C. Greubel, Jan 13 2020
-
Magma
[Binomial(n+5, 4)*(Binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)): n in [0..20]]; // G. C. Greubel, Jan 13 2020
-
Maple
seq(coeff(series((sqrt(1-4*x) +4*x-1)/(2*x*(1-4*x)^5), x, n+1), x, n), n = 0..20); # G. C. Greubel, Jan 13 2020
-
Mathematica
Table[Binomial[n+5, 4]*(Binomial[2*n+10, n+5]/140 - 2^(2*n+3)/(n+5)), {n,0,20}] (* G. C. Greubel, Jan 13 2020 *)
-
PARI
vector(20, n, binomial(n+4, 4)*(binomial(2*n+8, n+4)/140 - 2^(2*n+1)/(n+4)) ) \\ G. C. Greubel, Jan 13 2020
-
Sage
[binomial(n+5, 4)*(binomial(2*n+10, n+5)/140 - 2^(2*n+3)/(n+5)) for n in (0..20)] # G. C. Greubel, Jan 13 2020
Comments