cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A025227 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ... + a(n-1)*a(1) for n >= 3.

Original entry on oeis.org

0, 1, 2, 4, 12, 40, 144, 544, 2128, 8544, 35008, 145792, 615296, 2625792, 11311616, 49124352, 214838528, 945350144, 4182412288, 18593224704, 83015133184, 372090122240, 1673660915712, 7552262979584, 34178799378432, 155096251351040, 705533929816064
Offset: 0

Views

Author

Keywords

Comments

Series reversion of g.f. A(x) is -A(-x). - Michael Somos, Jul 27 2003
a(n) is the number of royal paths (A006318) from (0,0) to (n-1,n-1) such that every northeast (diagonal) step is either immediately followed by a north step or ends the path. For example a(3)=4 counts EDN, EENN, END, ENEN (E=east, D=diagonal, N=north). - David Callan, Jul 03 2006
From David Callan, Sep 25 2006: (Start)
a(n) is the number of ordered trees with n leaves in which (i) every node (= non-root non-leaf vertex) has at least 2 children and (ii) each leaf is either the leftmost or rightmost child of its parent. For example, a(3)=4 counts
|
/\ / \
/\ /\
and their mirror images. (End)
From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010: (Start)
a(n+1), n >= 0, is also the number of Rota-Baxter words in one idempotent generator x and one operator of arity n.
Alternatively, a(n+1) is the number of ways of adding pairs of parentheses to a string of n x's (the number m of parentheses pairs necessarily satisfies m <= n <= 2m+1 for a nonzero count), such that no two pairs of parentheses are immediately nested and no two x's remain adjacent. (End)
a(n) is the number of colored binary trees on n-1 vertices where leaves have 2 possible colors and internal nodes have 1 color. - Alexander Burstein, Mar 07 2020

Examples

			For n=2, a(3) = 4 has the following words: x(x), (x)x, (x(x)), ((x)x) corresponding to A(1,2)=2, and A(2,2)=2. - William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010
		

References

  • L. Guo and W. Sit, Enumeration of Rota-Baxter Words (extended abstract), ISSAC 2006 Proceedings, 123-131. [From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010]
  • L. Guo and W. Sit, Enumeration of Rota-Baxter Words, to appear in Mathematics in Computer Science, Special Issue on AADIOS special session, ACA, 2009. [From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010]

Crossrefs

Programs

  • Mathematica
    Table[CatalanNumber[n-1] Hypergeometric2F1[(1-n)/2, -n/2, 3/2-n, -1] + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 17 2016 *)
  • PARI
    a(n)=polcoeff((1-sqrt(1-4*x-4*x^2+x*O(x^n)))/2,n)

Formula

a(n) = A052709(n) + A052709(n-1).
A100238(n) = -(-1)^n*a(n), for n>1.
a(n) = Sum_{k=0..floor(n/2)} C(n-k-1)*binomial(n-k, k), where C(q)=binomial(2q, q)/(q+1) are the Catalan numbers (A000108). - Emeric Deutsch, Nov 14 2001 [{a(n+1)}A068763.%20-%20_Wolfdieter%20Lang">{n>=0} = row sum of A068763. - _Wolfdieter Lang, Jan 21 2023]
D-finite with recurrence n*a(n) = (4n-6)*a(n-1)+(4n-12)*a(n-2), n>2. a(1)=1, a(2)=2.
G.f. satisfies A(x)-A(x)^2 = x+x^2. - Ralf Stephan, Jun 30 2003
a(n) = Sum_{k=0..n-1} C(k)*C(k+1, n-k-1). - Paul Barry, Feb 23 2005
G.f. A(x) satisfies A(x)=x+C(2x*A(x)) where C(x) is g.f. of Catalan numbers A000108 offset 1. - Michael Somos, Sep 08 2005
G.f.: (1-sqrt(1-4x-4x^2))/2 = 2(x+x^2)/(1+sqrt(1-4x-4x^2)). - Michael Somos, Jun 08 2000
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is (essentially) Phi([1,2]). - Gary W. Adamson, Oct 27 2008
From William Sit (wyscc(AT)sci.ccny.cuny.edu), Jun 26 2010: (Start)
a(n+1), n >= 0, is column sum for the n-th column of the table R(m,n)=binomial(m+1, n-m)c(m) where c(m) is the m-th Catalan number A000108.
The table entry is nonzero if and only if m <= n <= 2m+1.
R(m,n) gives the number of Rota-Baxter words in one idempotent generator x and one operator of degree m and arity n, or the number of ways of adding m pairs of parentheses to a string of n x's (n necessarily lies between m and 2m+1 inclusive for a nonzero count), such that no two pairs of parentheses are immediately nested and no two x's remain adjacent. (End)
G.f.: A(x) = B(B(x)) where B(x) is the g.f. of A182399. -Paul D. Hanna, Apr 27 2012
G.f.: 1 - x + x*G(0), where G(k) = 1 + 1/(1 - (1+x)/(1 + x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 01 2013
a(n) ~ (1 + sqrt(2))^(n - 1/2) * 2^(n - 5/4) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 18 2013, simplified Jan 21 2023
O.g.f.: A(x) = x*S(x/(1 + x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. for the large Schröder numbers A006318. - Peter Bala, Mar 05 2020
G.f.: A(x) satisfies ((A(x) - A(-x))/(2*x))^2 = S(4*x^2), where S(x) is the g.f. for the large Schröder numbers A006318. - Alexander Burstein, May 20 2021
A(x) = (x + x^2)*c(x+x^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Note that (x - x^2)*c(x-x^2) = x. - Peter Bala, Aug 29 2024

A068764 Generalized Catalan numbers 2*x*A(x)^2 -A(x) +1 -x =0.

Original entry on oeis.org

1, 1, 4, 18, 88, 456, 2464, 13736, 78432, 456416, 2697088, 16141120, 97632000, 595912960, 3665728512, 22703097472, 141448381952, 885934151168, 5575020435456, 35230798994432, 223485795258368, 1422572226146304, 9083682419818496, 58169612565614592, 373486362257899520, 2403850703479816192
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(2,2; n)/2 with K(a,b; n) defined in a comment to A068763.
Hankel transform is A166232(n+1). - Paul Barry, Oct 09 2009

Examples

			G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 456*x^5 + 2464*x^6 + 13736*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1-Sqrt[1-8*x*(1-x)])/(4*x),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
    Round@Table[4^(n-1) Hypergeometric2F1[(1-n)/2, 1-n/2, 2, 1/2] + KroneckerDelta[n]/Sqrt[2], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 07 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], 4^(n - 1) Hypergeometric2F1[ (1 - n)/2, (2 - n)/2, 2, 1/2]]; (* Michael Somos, Nov 08 2015 *)
  • Maxima
    a(n):=sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n); /* Vladimir Kruchinin, Aug 11 2010 */
    
  • PARI
    {a(n) = my(A); if( n<1, n==0, n--;  A = x * O(x^n); n! * simplify( polcoeff( exp(4*x + A) * besseli(1, 2*x * quadgen(8) + A), n)))}; /* Michael Somos, Mar 31 2007 */
    
  • PARI
    x='x+O('x^66); Vec((1-sqrt(1-8*x*(1-x)))/(4*x)) \\ Joerg Arndt, May 06 2013

Formula

G.f.: (1-sqrt(1-8*x*(1-x)))/(4*x).
a(n+1) = 2*sum(a(k)*a(n-k), k=0..n), n>=1, a(0) = 1 = a(1).
a(n) = (2^n)*p(n, -1/2) with the row polynomials p(n, x) defined from array A068763.
E.g.f. (offset -1) is exp(4*x)*BesselI(1, 2*sqrt(2)*x)/(sqrt(2)*x). - Vladeta Jovovic, Mar 31 2004
The o.g.f. satisfies A(x) = 1 + x*(2*A(x)^2 - 1), A(0) = 1. - Wolfdieter Lang, Nov 13 2007
a(n) = subs(t=1,(d^(n-1)/dt^(n-1))(-1+2*t^2)^n)/n!, n >= 2, due to the Lagrange series for the given implicit o.g.f. equation. This formula holds also for n=1 if no differentiation is used. - Wolfdieter Lang, Nov 13 2007, Feb 22 2008
1/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-x/(1-x-2x/(1-..... (continued fraction). - Paul Barry, Jan 29 2009
a(n) = A166229(n)/(2-0^n). - Paul Barry, Oct 09 2009
a(n) = sum(binomial(n-1,k-1)*1/k*sum(binomial(k,j)*binomial(k+j,j-1),j,1,k),k,1,n), n>0. - Vladimir Kruchinin, Aug 11 2010
D-finite with recurrence: (n+1)*a(n) = 4*(2*n-1)*a(n-1) - 8*(n-2)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(1+sqrt(2))*(4+2*sqrt(2))^n/(2*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012
a(n) = 4^(n-1)*hypergeom([(1-n)/2,1-n/2], [2], 1/2) + 0^n/sqrt(2). - Vladimir Reshetnikov, Nov 07 2015
0 = a(n)*(+64*a(n+1) - 160*a(n+2) + 32*a(n+3)) + a(n+1)*(+32*a(n+1) + 48*a(n+2) - 20*a(n+3)) + a(n+2)*(+4*a(n+2) + a(n+3)) for all n>=0. - Michael Somos, Nov 08 2015
a(n) = (-1)^n * Sum_{k=0..n} (-2)^k * binomial(n,k) * binomial(2*k+1,n) / (2*k+1). - Seiichi Manyama, Jul 24 2023

A068772 Generalized Catalan numbers 10*x*A(x)^2 -A(x) +1 -9*x =0.

Original entry on oeis.org

1, 1, 20, 410, 8600, 184200, 4020000, 89205000, 2008700000, 45816140000, 1056825200000, 24618524200000, 578457724000000, 13695679012000000, 326448619920000000, 7827776361090000000, 188701194087000000000
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

This is the tenth member in the a-family of sequences K(a,a; n), a=1,2,3,...,n>=0, defined in a comment to the array A068763.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := (360 (2 - n) a[n - 2] + 20 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-40*x*(1-9*x)])/(20*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)

Formula

a(n) = (10^n) * p(n, -9/10) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 10*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-40*x*(1-9*x)))/(20*x).
Recurrence: (n+1)*a(n) = 360*(2-n)*a(n-2) + 20*(2*n-1)*a(n-1). - Fung Lam, Mar 05 2014
a(n) ~ sqrt(5+5*sqrt(10)) * (20+2*sqrt(10))^n / (10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014

A068766 Generalized Catalan numbers 4*x*A(x)^2 -A(x)+1-3*x=0.

Original entry on oeis.org

1, 1, 8, 68, 608, 5664, 54528, 538944, 5441024, 55889408, 582348800, 6140864512, 65414742016, 702897995776, 7609805045760, 82929151328256, 908978855215104, 10014523823357952, 110840574196580352, 1231847926116384768
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n)=K(4,4; n)/4 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Cf. A000108, A068764-5, A068767-72, A025227-30.

Programs

  • Maple
    a := n -> `if`(n=0,1,simplify(2^n*GegenbauerC(n-1, -n, -2))/(2*n)):
    seq(a(n), n=0..19); # Peter Luschny, May 09 2016
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-16*x*(1-3*x)])/(8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n)=(4^n)*p(n, -3/4) with the row polynomials p(n, x) defined from array A068763.
a(n+1)= 4*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-16*x*(1-3*x)))/(8*x).
Recurrence: (n+1)*a(n) = 48*(2-n)*a(n-2) + 8*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(6) * 12^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
a(n) = 2^n*GegenbauerC(n-1, -n, -2)/(2*n) for n>=1. - Peter Luschny, May 09 2016

A068767 Generalized Catalan numbers 5*x*A(x)^2 -A(x) +1 -4*x=0.

Original entry on oeis.org

1, 1, 10, 105, 1150, 13050, 152500, 1825625, 22293750, 276758750, 3483287500, 44352006250, 570333187500, 7396680812500, 96638930625000, 1270796364765625, 16806545339843750, 223400240246093750
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(5,5; n)/5 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-20*x*(1-4*x)])/(10*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (5^n) * p(n, -4/5) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 5*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-20*x*(1-4*x)))/(10*x).
(n+1)*a(n) = 80*(2-n)*a(n-2) + 10*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(10+10*sqrt(5)) * (10+2*sqrt(5))^n / (10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
Equivalently, a(n) ~ 2^(2*n) * 5^((n-1)/2) * phi^(n + 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021

A068768 Generalized Catalan numbers 6*x*A(x)^2 -A(x) +1 -5*x =0.

Original entry on oeis.org

1, 1, 12, 150, 1944, 25992, 356832, 5008824, 71629920, 1040509152, 15315578496, 227981324736, 3426473187072, 51929043390720, 792725911280640, 12178706839758720, 188158789025809920, 2921622674591946240
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(6,6; n)/6 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-24*x*(1-5*x)])/(12*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (6^n) * p(n, -5/6) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 6*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-24*x*(1-5*x)))/(12*x).
D-finite with recurrence: (n+1)*a(n) = 120*(2-n)*a(n-2) + 12*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(3+3*sqrt(6)) * (12+2*sqrt(6))^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068769 Generalized Catalan numbers 7*x*A(x)^2 -A(x) +1 -6*x=0.

Original entry on oeis.org

1, 1, 14, 203, 3038, 46746, 736764, 11853051, 194053622, 3224557406, 54265836548, 923218762270, 15854602773100, 274500192707860, 4786546243533432, 83989334625037947, 1481965556616225702
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(7,7; n)/7 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 14; a[n_] := (168 (2 - n) a[n - 2] + 14 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-28*x*(1-6*x)])/(14*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (7^n) * p(n, -6/7) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 7*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-28*x*(1-6*x)))/(14*x).
Recurrence: (n+1)*a(n) = 168*(2-n)*a(n-2) + 14*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(14+14*sqrt(7)) * (14+2*sqrt(7))^n / (14*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068770 Generalized Catalan numbers 8*x*A(x)^2 -A(x) +1 -7*x=0.

Original entry on oeis.org

1, 1, 16, 264, 4480, 77952, 1386496, 25135616, 463233024, 8658673664, 163829383168, 3132565553152, 60446638866432, 1175715287400448, 23028562592268288, 453848132868898816, 8993594212565909504
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(8,8; n)/8 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-32*x*(1-7*x)])/(16*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    a(n) = if(n, (4^(n-1)*14^(1/2*n+1/2)*pollegendre(n+1,2/7*14^(1/2)) - pollegendre(n,2/7*14^(1/2))*4^n*14^(n/2))\/n, 1) \\ Charles R Greathouse IV, Mar 19 2017

Formula

a(n) = (8^n) * p(n, -7/8) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 8*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-32*x*(1-7*x)))/(16*x).
a(n) = (4^(n-1)*14^(1/2*n+1/2)*LegendreP(n+1,2/7*14^(1/2)) - LegendreP(n,2/7*14^(1/2))*4^n*14^(1/2*n))/n for n > 0. - Mark van Hoeij, Apr 23 2010
Recurrence: (n+1)*a(n) = 224*(2-n)*a(n-2) + 16*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(1+2*sqrt(2)) * (16+4*sqrt(2))^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068771 Generalized Catalan numbers 9*x*A(x)^2 -A(x) +1 -8*x=0.

Original entry on oeis.org

1, 1, 18, 333, 6318, 122634, 2429028, 48974949, 1002875094, 20814628158, 437088964860, 9272342710962, 198456435657036, 4280758166952756, 92972201833888200, 2031520673763657621, 44630859892110807654
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (288 (2 - n) a[n - 2] + 18 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}](* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-36*x*(1-8*x)])/(18*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (9^n) * p(n, -8/9) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 9*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-36*x*(1-8*x)))/(18*x).
Recurrence: (n+1)*a(n) = 288*(2-n)*a(n-2) + 18*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(2) * 24^n / (3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014

A068765 Generalized Catalan numbers 3*x*A(x)^2 -A(x) +1 -2*x = 0.

Original entry on oeis.org

1, 1, 6, 39, 270, 1962, 14796, 114831, 911574, 7368894, 60457428, 502162902, 4214515212, 35686162548, 304491863448, 2615468845311, 22598114065254, 196269877811574, 1712578870493316, 15005719955119698
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n)=K(3,3; n)/3 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-12*x*(1-2*x)])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n)=(3^n)*p(n, -2/3) with the row polynomials p(n, x) defined from array A068763.
a(n+1)= 3*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-12*x*(1-2*x)))/(6*x).
Recurrence: (n+1)*a(n) = 24*(2-n)*a(n-2) + 6*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(6+6*sqrt(3)) * (6+2*sqrt(3))^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
Showing 1-10 of 10 results.