cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068772 Generalized Catalan numbers 10*x*A(x)^2 -A(x) +1 -9*x =0.

Original entry on oeis.org

1, 1, 20, 410, 8600, 184200, 4020000, 89205000, 2008700000, 45816140000, 1056825200000, 24618524200000, 578457724000000, 13695679012000000, 326448619920000000, 7827776361090000000, 188701194087000000000
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

This is the tenth member in the a-family of sequences K(a,a; n), a=1,2,3,...,n>=0, defined in a comment to the array A068763.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := (360 (2 - n) a[n - 2] + 20 (2 n - 1) a[n - 1])/(n + 1); Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 04 2014 *)
    CoefficientList[Series[(1-Sqrt[1-40*x*(1-9*x)])/(20*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 06 2014 *)

Formula

a(n) = (10^n) * p(n, -9/10) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 10*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-40*x*(1-9*x)))/(20*x).
Recurrence: (n+1)*a(n) = 360*(2-n)*a(n-2) + 20*(2*n-1)*a(n-1). - Fung Lam, Mar 05 2014
a(n) ~ sqrt(5+5*sqrt(10)) * (20+2*sqrt(10))^n / (10*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014

A068770 Generalized Catalan numbers 8*x*A(x)^2 -A(x) +1 -7*x=0.

Original entry on oeis.org

1, 1, 16, 264, 4480, 77952, 1386496, 25135616, 463233024, 8658673664, 163829383168, 3132565553152, 60446638866432, 1175715287400448, 23028562592268288, 453848132868898816, 8993594212565909504
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(8,8; n)/8 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-32*x*(1-7*x)])/(16*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)
  • PARI
    a(n) = if(n, (4^(n-1)*14^(1/2*n+1/2)*pollegendre(n+1,2/7*14^(1/2)) - pollegendre(n,2/7*14^(1/2))*4^n*14^(n/2))\/n, 1) \\ Charles R Greathouse IV, Mar 19 2017

Formula

a(n) = (8^n) * p(n, -7/8) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 8*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-32*x*(1-7*x)))/(16*x).
a(n) = (4^(n-1)*14^(1/2*n+1/2)*LegendreP(n+1,2/7*14^(1/2)) - LegendreP(n,2/7*14^(1/2))*4^n*14^(1/2*n))/n for n > 0. - Mark van Hoeij, Apr 23 2010
Recurrence: (n+1)*a(n) = 224*(2-n)*a(n-2) + 16*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(1+2*sqrt(2)) * (16+4*sqrt(2))^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
Showing 1-2 of 2 results.