cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068766 Generalized Catalan numbers 4*x*A(x)^2 -A(x)+1-3*x=0.

Original entry on oeis.org

1, 1, 8, 68, 608, 5664, 54528, 538944, 5441024, 55889408, 582348800, 6140864512, 65414742016, 702897995776, 7609805045760, 82929151328256, 908978855215104, 10014523823357952, 110840574196580352, 1231847926116384768
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n)=K(4,4; n)/4 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Cf. A000108, A068764-5, A068767-72, A025227-30.

Programs

  • Maple
    a := n -> `if`(n=0,1,simplify(2^n*GegenbauerC(n-1, -n, -2))/(2*n)):
    seq(a(n), n=0..19); # Peter Luschny, May 09 2016
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-16*x*(1-3*x)])/(8*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n)=(4^n)*p(n, -3/4) with the row polynomials p(n, x) defined from array A068763.
a(n+1)= 4*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-16*x*(1-3*x)))/(8*x).
Recurrence: (n+1)*a(n) = 48*(2-n)*a(n-2) + 8*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(6) * 12^n / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
a(n) = 2^n*GegenbauerC(n-1, -n, -2)/(2*n) for n>=1. - Peter Luschny, May 09 2016

A068768 Generalized Catalan numbers 6*x*A(x)^2 -A(x) +1 -5*x =0.

Original entry on oeis.org

1, 1, 12, 150, 1944, 25992, 356832, 5008824, 71629920, 1040509152, 15315578496, 227981324736, 3426473187072, 51929043390720, 792725911280640, 12178706839758720, 188158789025809920, 2921622674591946240
Offset: 0

Views

Author

Wolfdieter Lang, Mar 04 2002

Keywords

Comments

a(n) = K(6,6; n)/6 with K(a,b; n) defined in a comment to A068763.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-24*x*(1-5*x)])/(12*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 04 2014 *)

Formula

a(n) = (6^n) * p(n, -5/6) with the row polynomials p(n, x) defined from array A068763.
a(n+1) = 6*sum(a(k)*a(n-k), k=0..n), n>=1, a(0)=1=a(1).
G.f.: (1-sqrt(1-24*x*(1-5*x)))/(12*x).
D-finite with recurrence: (n+1)*a(n) = 120*(2-n)*a(n-2) + 12*(2*n-1)*a(n-1). - Fung Lam, Mar 04 2014
a(n) ~ sqrt(3+3*sqrt(6)) * (12+2*sqrt(6))^n / (6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 04 2014
Showing 1-2 of 2 results.