cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A002623 Expansion of 1/((1-x)^4*(1+x)).

Original entry on oeis.org

1, 3, 7, 13, 22, 34, 50, 70, 95, 125, 161, 203, 252, 308, 372, 444, 525, 615, 715, 825, 946, 1078, 1222, 1378, 1547, 1729, 1925, 2135, 2360, 2600, 2856, 3128, 3417, 3723, 4047, 4389, 4750, 5130, 5530, 5950, 6391, 6853, 7337, 7843, 8372, 8924, 9500
Offset: 0

Views

Author

Keywords

Comments

Also a(n) is the number of nondegenerate triangles that can be made from rods of lengths 1 to n+1. - Alfred Bruckstein; corrected by Hans Rudolf Widmer, Nov 02 2023
Also number of circumscribable (or escrible) quadrilaterals that can be made from rods of length 1,2,3,4,...,n. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
Also number of 2 X n binary matrices up to row and column permutation (see the link: Binary matrices up to row and column permutations). - Vladeta Jovovic
Also partial sum of alternate triangular numbers (1, 3, 1+6, 3+10, 1+6+15, 3+10+21, etc.); and also number of triangles pointing in opposite direction to largest triangle in triangular matchstick arrangement of side n+2 (cf. A002717, also the Larsen article). - Henry Bottomley, Aug 08 2000
Ordered union of A002412(n+1) and A016061(n+1). - Lekraj Beedassy, Oct 13 2003
Also Molien series for certain 4-D representation of cyclic group of order 2. - N. J. A. Sloane, Jun 12 2004
From Radu Grigore (radugrigore(AT)gmail.com), Jun 19 2004: (Start)
a(n) = floor( (n+2)*(n+4)*(2n+3) / 24 ). E.g., a(2) = floor(4*6*7/24) = 7 because there are 7 upside down triangles (6 of size one and 1 of size two) in the matchstick figure:
/\
/\/\
/\/\/\
/\/\/\/\
(End)
Number of non-congruent non-parallelogram trapezoids with positive integer sides (trapezints) and perimeter 2n+5. Also with perimeter 2n+8. - Michael Somos, May 12 2005
a(n) = A108561(n+4,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
Also number of nonisomorphic planes with n points and 2 lines. E.g., a(0)=1 because with no points, we just have two empty lines. a(1)=3 because the one point may belong to 0, 1 or 2 lines. a(2)=7 because there are 7 ways to determine which of 2 points belong to which of 2 lines, up to isomorphism, i.e., up to a bijection f on the sets of points and a bijection g on the sets of lines, such that A belongs to a iff f(A) belongs to g(a). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
a(n-2) is the number of ways to pick two non-overlapping subwords of equal nonzero length from a word of length n. E.g., a(5-2)=a(3)=13 since the word 12345 of length 5 has the following subword pairs: 1,2; 1,3; 1,4; 1,5; 2,3; 2,4; 2,5; 3,4; 3,5; 4,5; 12,34; 12,45; 23,45. - Michael Somos, Oct 22 2006
Partial sums of A002620. - G.H.J. van Rees (vanrees(AT)cs.umanitoba.ca), Feb 16 2007
From Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007: (Start)
Also number of squares of any size in a staircase of n steps built with unit squares:
||__
||__|
||__||
For a staircase of 3 steps 6 squares of size 1 and 1 square of size 2, hence c(3)=7.
Columns sums of:
1 3 6 10 15 21 28 ...
1 3 6 10 15 ...
1 3 6 ...
1 ...
---------------------
1 3 7 13 22 34 50 ...
(End)
a(n) = sum of row n+1 of triangle A134446. Also, binomial transform of [1, 2, 2, 0, 1, -2, 4, -8, 16, -32, ...]. - Gary W. Adamson, Oct 25 2007
Let b(n) be the number of 4-tuples (w,x,y,z) having all terms in {1,...,n} and 2w=x+y+z+n; then b(n+3) = a(n) for n >= 0. - Clark Kimberling, May 08 2012
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and w >= x+y and x <= y. - Clark Kimberling, Jun 04 2012
Also, number of unlabeled bipartite graphs with two left vertices and n right vertices. - Yavuz Oruc, Jan 14 2018
Also number of triples (x,y,z) with 0 < x <= y <= z <= n + 1, x + y > z. - Ralf Steiner, Feb 06 2020
Bisections A002412 and A016061: a(2*k) = k*(k+1)*(4*k-1)/3! and a(2*k+1) = (k+1)*(k+2)*(4*k+9)/3!, for k >= 0. See the Woolhouse link, II. Solution by Stephen Watson, p. 65, with index shifts. - Mo Li, Apr 02 2020
Also, Wiener index of the square of the path graph P_(n+2). - Allan Bickle, Aug 01 2020
Maximum Wiener index of all maximal 2-degenerate graphs with n+2 vertices. (A maximal 2-degenerate graph can be constructed from a 2-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to two existing vertices.) The extremal graphs are squares of paths, so the bound also applies to 2-trees and maximal outerplanar graphs. - Allan Bickle, Sep 15 2022

Examples

			G.f. = 1 + 3*x + 7*x^2 + 13*x^3 + 22*x^4 + 34*x^5 + 50*x^6 + 70*x^7 + 95*x^8 + ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • P. Diaconis, R. L. Graham and B. Sturmfels, Primitive partition identities, in Combinatorics: Paul Erdős is Eighty, Vol. 2, Bolyai Soc. Math. Stud., 2, 1996, pp. 173-192.
  • H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • I. Siap, Linear codes over F_2 + u*F_2 and their complete weight enumerators, in Codes and Designs (Ohio State, May 18, 2000), pp. 259-271. De Gruyter, 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002620 (first differences), A000292, A001752 (partial sums), A062109 (binomial transf.).
Bisections A002412, A016061.
Cf. also A002717 (a companion sequence), A002727, A006148, A057524, A134446, A014125, A122046, A122047.
The maximum Wiener index of all maximal k-degenerate graphs for k=1..6 are given in A000292, A002623 (this sequence), A014125, A122046, A122047, A175724, respectively.

Programs

  • Maple
    A002623 := n->(1/16)*(1+(-1)^n)+(n+1)/8+binomial(n+2,2)/4+binomial(n+3,3)/2;
    seq( ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4,n=1..47); # Lewis
    a := n -> ((-1)^n*3 + 45 + 68*n + 30*n^2 + 4*n^3) / 48:
    seq(a(n), n=0..46); # Peter Luschny, Jan 22 2018
  • Mathematica
    CoefficientList[Series[1/((1-x)^3(1-x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{1,3,7,13,22},50] (* Harvey P. Dale, Jul 19 2011 *)
    Table[((2 n^3 + 15 n^2 + 34 n + 45 / 2 + (3/2) (-1)^n) / 24), {n, 0, 100}] (* Vincenzo Librandi, Jan 15 2018 *)
    a[ n_] := Floor[(n + 2)*(n + 4)*(2*n + 3)/24]; (* Michael Somos, Feb 19 2024 *)
  • PARI
    {a(n) = (8 + 34/3*n + 5*n^2 + 2/3*n^3) \ 8}; /* Michael Somos, Sep 04 1999 */
    
  • PARI
    x='x+O('x^50); Vec(1/((1 - x)^3 * (1 - x^2))) \\ Indranil Ghosh, Apr 04 2017
    
  • Python
    def A002623(n): return ((n+2)*(n+4)*((n<<1)+3)>>3)//3 # Chai Wah Wu, Mar 25 2024

Formula

a(n+1) = a(n) + {(k-1)*k if n=2*k} or {k*k if n=2*k+1}.
a(n)+a(n+1) = A000292(n+1).
a(n) = a(n-2) + A000217(n+1) = A002717(n+2) - A000292(n+1).
Also: a(n) = C(n+3, 3) - a(n-1) with a(0)=1. - Labos Elemer, Apr 26 2003
From Paul Barry, Jul 01 2003: (Start)
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+3,3).
The signed version 1, -3, 7, ... has the formula:
a(n) = (4*n^3 + 30*n^2 + 68*n + 45)*(-1)^n/48 + 1/16.
This is the partial sums of the signed version of A000292. (End)
From Paul Barry, Jul 21 2003: (Start)
a(n) = Sum_{k=0..n} floor((k+2)^2/4).
a(n) = Sum_{k=0..n} Sum_{j=0..k} Sum_{i=0..j} (1+(-1)^i)/2. (End)
a(n) = a(n - 2) + (n*(n - 1))/2, with n>2, a(1)=0, a(2)=1; a(n) = (4*n^3+6*n^2-4*n+3*(-1)^n-3)/48, with offset 2. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004 (formula simplified by Bruno Berselli, Aug 29 2013)
a(n) = ((2*n+3)*(n+2)*(n+1)/6-floor((n+2)/2))/4, with offset 1. - Jerry W. Lewis (JLewis(AT)wyeth.com), Mar 23 2005
a(n) = 2*a(n-1) - a(n-2) + 1 + floor(n/2). - Bjorn Kjos-Hanssen (bjorn(AT)math.uconn.edu), Nov 10 2005
A002620(n+3) = a(n+1) - a(n). - Michael Somos, Sep 04 1999
Euler transform of length 2 sequence [ 3, 1]. - Michael Somos, Sep 04 2006
a(n) = -a(-5-n) for all n in Z. - Michael Somos, Sep 04 2006
Let P(i,k) be the number of integer partitions of n into k parts, then with k=2 we have a(n) = sum_{m=1}^{n} sum_{i=k}^{m} P(i,k). For k=1 we get A000217 = triangular numbers. - Thomas Wieder, Feb 18 2007
a(n) = (n+(3+(-1)^n)/2)*(n+(7+(-1)^n)/2)*(2*n+5-2*(-1)^n)/24. - Philippe LALLOUET (philip.lallouet(AT)orange.fr), Oct 19 2007 (corrected by Bruno Berselli, Aug 30 2013)
From Johannes W. Meijer, May 20 2011: (Start)
a(n) = A006918(n+1) + A006918(n).
a(n) = A058187(n-2) + 2*A058187(n-1) + A058187(n). (End)
a(0)=1, a(1)=3, a(2)=7, a(3)=13, a(4)=22; for n > 4, a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). - Harvey P. Dale, Jul 19 2011
a(n) = Sum_{i=0..n+2} floor(i/2)*ceiling(i/2). - Bruno Berselli, Aug 30 2013
a(n) = 15/16 + (1/16)*(-1)^n + (17/12)*n + (5/8)*n^2 + (1/12)*n^3. - Robert Israel, Jul 07 2014
a(n) = Sum_{i=0..n+2} (n+1-i)*floor(i/2+1). - Bruno Berselli, Apr 04 2017
a(n) = 1 + floor((2*n^3 + 15*n^2 + 34*n) / 24). - Allan Bickle, Aug 01 2020
E.g.f.: ((24 + 51*x + 21*x^2 + 2*x^3)*cosh(x) + (21 + 51*x + 21*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Jun 02 2021

A001752 Expansion of 1/((1+x)*(1-x)^5).

Original entry on oeis.org

1, 4, 11, 24, 46, 80, 130, 200, 295, 420, 581, 784, 1036, 1344, 1716, 2160, 2685, 3300, 4015, 4840, 5786, 6864, 8086, 9464, 11011, 12740, 14665, 16800, 19160, 21760, 24616, 27744, 31161, 34884, 38931, 43320, 48070, 53200, 58730, 64680, 71071, 77924, 85261
Offset: 0

Views

Author

Keywords

Comments

Define a unit column of a binary matrix to be a column with only one 1. a(n) = number of 3 X n binary matrices with 1 unit column up to row and column permutations (if offset is 1). - Vladeta Jovovic, Sep 09 2000
Generally, number of 3 X n binary matrices with k=0,1,2,... unit columns, up to row and column permutations, is the coefficient of x^k in 1/6*(Z(S_n; 5 + 3*x,5 + 3*x^2, ...) + 3*Z(S_n; 3 + x,5 + 3*x^2,3 + x^3,5 + 3*x^4, ...) + 2*Z(S_n; 2,2,5 + 3*x^3,2,2,5 + 3*x^6, ...)), where Z(S_n; x_1,x_2,...,x_n) is the cycle index of symmetric group S_n of degree n.
First differences of a(n) give number of minimal 3-covers of an unlabeled n-set that cover 4 points of that set uniquely (if offset is 4).
Transform of tetrahedral numbers, binomial(n+3,3), under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005
Equals triangle A152205 as an infinite lower triangular matrix * [1, 2, 3, ...]. - Gary W. Adamson, Feb 14 2010
With a leading zero, number of all possible octahedra of any size, formed when intersecting a regular tetrahedron by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Sep 13 2012
With 2 leading zeros and offset 1, the sequence becomes 0,0,1,4,11,... for n=1,2,3,... Call this b(n). Consider the partitions of n into two parts (p,q) with p <= q. Then b(n) is the total volume of the family of rectangular prisms with dimensions p, |q - p| and |q - p|. - Wesley Ivan Hurt, Apr 14 2018
Conjecture: For n > 2, a(n-3) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of an n X n square matrix M(n) defined as the n-th principal submatrix of the array A010751 whose general element is given by M[i,j] = floor((j - i + 1)/2). - Stefano Spezia, Jan 12 2022
Consider the following drawing of the complete graph on n vertices K_n: Vertices 1, 2, ..., n are on a straight line. Any pair of nonconsecutive vertices (i, j) with i < j is connected by a semicircle that goes above the line if i is odd, and below if i is even. With four leading zeros and offset 1, a(n) gives the number of edge crossings of the aforementioned drawing of K_n. - Carlo Francisco E. Adajar, Mar 17 2022

Examples

			There are 4 binary 3 X 2 matrices with 1 unit column up to row and column permutations:
  [0 0] [0 0] [0 1] [0 1]
  [0 0] [0 1] [0 1] [0 1]
  [0 1] [1 1] [1 0] [1 1].
For n=5, the numbers of the octahedra, starting from the smallest size, are Te(5)=35, Te(3)=10, and Te(1)=1, the sum being 46. Te denotes the tetrahedral number A000292. - _V.J. Pohjola_, Sep 13 2012
		

References

  • T. A. Saaty, The Minimum Number of Intersections in Complete Graphs, Proc. Natl. Acad. Sci. USA., 52 (1964), 688-690.

Crossrefs

Cf. A001753 (partial sums), A002623 (first differences), A158454 (signed column k=2), A169792 (binomial transform).

Programs

  • Magma
    [Floor(((n+3)^2-1)*((n+3)^2-3)/48): n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
  • Maple
    A001752:=n->(3*(-1)^n+93+168*n+100*n^2+24*n^3+2*n^4)/96:
    seq(A001752(n), n=0..50); # Wesley Ivan Hurt, Apr 01 2015
  • Mathematica
    a = {1, 4}; Do[AppendTo[a, a[[n - 2]] + (n*(n + 1)*(n + 2))/6], {n, 3, 10}]; a
    (* Number of octahedra *) nnn = 100; Teo[n_] := (n - 1) n (n + 1)/6
    Table[Sum[Teo[n - nn], {nn, 0, n - 1, 2}], {n, 1, nnn}]
    (* V.J. Pohjola, Sep 13 2012 *)
    LinearRecurrence[{4,-5,0,5,-4,1},{1,4,11,24,46,80},50] (* Harvey P. Dale, Feb 07 2019 *)
  • PARI
    a(n)=if(n<0,0,((n+3)^2-1)*((n+3)^2-3)/48-if(n%2,1/16))
    
  • PARI
    a(n)=(n^4+12*n^3+50*n^2+84*n+46)\/48 \\ Charles R Greathouse IV, Sep 13 2012
    

Formula

a(n) = floor(((n+3)^2 - 1)*((n+3)^2 - 3)/48).
G.f.: 1/((1+x)*(1-x)^5).
a(n) - 2*a(n-1) + a(n-2) = A002620(n+2).
a(n) + a(n-1) = A000332(n+4).
a(n) - a(n-2) = A000292(n+1).
a(n) = Sum_{k=0..n} (-1)^(n-k)*C(k+4, 4). - Paul Barry, Jul 01 2003
a(n) = (3*(-1)^n + 93 + 168*n + 100*n^2 + 24*n^3 + 2*n^4)/96. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 14 2004
From Paul Barry, Apr 16 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n-2k+3, 3).
a(n) = Sum_{k=0..n} binomial(k+3, 3)*(1-(-1)^(n+k-1))/2. (End)
a(n) = A108561(n+5,n) for n > 0. - Reinhard Zumkeller, Jun 10 2005
From Wesley Ivan Hurt, Apr 01 2015: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 5*(n-4) - 4*a(n-5) + a(n-6).
a(n) = Sum_{i=0..n+3} (n+3-i) * floor(i^2/2)/2. (End)
Boas-Buck recurrence: a(n) = (1/n)*Sum_{p=0..n-1} (5 + (-1)^(n-p))*a(p), n >= 1, a(0) = 1. See the Boas-Buck comment in A158454 (here for the unsigned column k = 2 with offset 0). - Wolfdieter Lang, Aug 10 2017
Convolution of A000217 and A004526. - R. J. Mathar, Mar 29 2018
E.g.f.: ((48 + 147*x + 93*x^2 + 18*x^3 + x^4)*cosh(x) + (45 + 147*x + 93*x^2 + 18*x^3 + x^4)*sinh(x))/48. - Stefano Spezia, Jan 12 2022

Extensions

Formulae corrected by Bruno Berselli, Sep 13 2012

A038846 4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.

Original entry on oeis.org

1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0

Views

Author

Keywords

Comments

Also minimal 3-covers of a labeled n-set that cover 3 points of that set uniquely (if offset is 3). Cf. A057524 for unlabeled case. - Vladeta Jovovic, Sep 02 2000
Also convolution of A020918 with A000984 (central binomial coefficients).
Let M=[1,0,0,i;0,1,i,0;0,i,1,0;i,0,0,1], i=sqrt(-1). Then 1/det(I-xM) = 1/(1-4x)^4. - Paul Barry, Apr 27 2005
With a different offset, number of n-permutations (n=4) of 5 objects u, v, w, z, x with repetition allowed, containing exactly three u's. Example: a(1)=16 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu and xuuu. - Zerinvary Lajos, May 19 2008
From A152818. a(n) = A006044/6. - Paul Curtz, Jan 07 2009
Also convolution of A000302 with A038845, also convolution of A002457 with A002802, also convolution of A002697. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
  • Mathematica
    Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+3, 3)*4^n.
G.f.: 1/(1-4*x)^4.
a(n) = Sum_{a+b+c+d+e+f+g+h=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g)*f(h) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 108*log(4/3) - 30.
Sum_{n>=0} (-1)^n/a(n) = 300*log(5/4) - 66. (End)
E.g.f.: exp(4*x)*(3 + 36*x + 72*x^2 + 32*x^3)/3. - Stefano Spezia, Jan 01 2023

A057669 Triangle T(n,k) of number of minimal 3-covers of an unlabeled n+3-set that cover k points of that set uniquely (k=3,..,n+3).

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 7, 7, 6, 3, 11, 13, 14, 9, 4, 16, 22, 26, 21, 13, 5, 23, 34, 44, 40, 31, 17, 7, 31, 50, 68, 68, 59, 41, 23, 8, 41, 70, 100, 106, 101, 79, 55, 28, 10, 53, 95, 140, 157, 158, 136, 106, 68, 35, 12, 67, 125, 190, 221, 234, 214, 182, 132, 85, 42, 14, 83, 161
Offset: 0

Views

Author

Vladeta Jovovic, Oct 16 2000

Keywords

Comments

Row sums give A005783.

Examples

			[1], [2, 1], [4, 3, 2], [7, 7, 6, 3], ...
There are 7 minimal 3-covers of an unlabeled 6-set that cover 3 points of that set uniquely: {{1}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5}, {3, 4, 5, 6}}, {{1, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5}}, {{1, 5, 6}, {2, 4, 6}, {3, 4, 5, 6}}, {{1, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}, {{1, 4, 5, 6}, {2, 4, 5, 6}, {3, 4, 5, 6}}.
		

Crossrefs

Formula

T(n, k) = b(n, k)-b(n-1, k); b(n, k) = coefficient of x^k in x^3/6*(Z(S_n; 5+3*x, 5+3*x^2, ...)+3*Z(S_n; 3+x, 5+3*x^2, 3+x^3, 5+3*x^4, ...)+2*Z(S_n; 2, 2, 5+3*x^3, 2, 2, 5+3*x^6, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A057222 Number of 4 X n binary matrices with 1 unit column up to row and column permutations.

Original entry on oeis.org

1, 6, 27, 102, 333, 969, 2572, 6309, 14472, 31333, 64500, 127011, 240475, 439626, 778848, 1341286, 2251350, 3691629, 5925443, 9326451, 14417175, 21918490, 32812572, 48422262, 70510271, 101402091, 144137322, 202654565, 282015876, 388677651, 530815688, 718713015, 965220510
Offset: 1

Views

Author

Vladeta Jovovic, Sep 18 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 4-covers of an unlabeled n-set that cover 5 points of that set uniquely (if offset is 5).
Generally, the number b(n, k) of 4 X n binary matrices with k=0, 1, ..., n unit columns, up to row and column permutations, is coefficient of x^k in 1/24*(Z(S_n; 12 + 4*x, 12 + 4*x^2, ... ) + 8*Z(S_n; 3 + x, 3 + x^2, 12 + 4*x^3, 3 + x^4, 3 + x^5, 12 + 4*x^6, ...) + 6*Z(S_n; 6 + 2*x, 12 + 4*x^2, 6 + 2*x^3, 12 + 4*x^4, ...) + 3*Z(S_n; 4, 12 + 4*x^2, 4, 12 + 4*x^4, ...) + 6*Z(S_n; 2, 4, 2, 12 + 4*x^4, 2, 4, 2, 12 + 4*x^8, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. for b(n,k), k=0,1,..,n, is 1/k!* k - th derivative of 1/24*(1/(1 - x)^12/(1 - x*t)^4 + 8/(1 - x)^3/(1 - x^3)^3/(1 - x^3*t^3)/(1 - x*t) + 6/(1 - x)^6/(1 - x^2)^3/(1 - x^2*t^2)/(1 - x*t)^2 + 3/(1 - x)^4/(1 - x^2)^4/(1 - x^2*t^2)^2 + 6/(1 - x)^2/(1 - x^2)/(1 - x^4)^2/(1 - x^4*t^4)) with respect to t, when t=0.

Crossrefs

Formula

G.f.: 1/6*x*(1/(1-x)^12+2/(1-x^3)^3/(1-x)^3+3/(1-x^2)^3/(1-x)^6).

Extensions

Added more terms, Joerg Arndt, May 21 2013

A057968 Triangle T(n,k) of numbers of minimal 5-covers of an unlabeled n+5-set that cover k points of that set uniquely (k=5,..,n+5).

Original entry on oeis.org

1, 4, 1, 19, 7, 2, 91, 46, 16, 3, 436, 279, 115, 28, 5, 1991, 1563, 740, 221, 49, 7, 8651, 7978, 4309, 1524, 405, 75, 10, 35354, 37290, 22604, 9272, 2875, 659, 115, 13, 135617, 159948, 107584, 50058, 17840, 4866, 1042, 163, 18, 488312, 633211
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005785.

Examples

			[1], [4, 1], [19, 7, 2], [91, 46, 16, 3], [436, 279, 115, 28, 5], ...; there are 46 minimal 5-covers of an unlabeled 8-set that cover 6 points of that set uniquely.
		

Crossrefs

Formula

T(n, k)=b(n, k)-b(n-1, k); b(n, k)=coefficient of x^k in (x^5/5!)*(Z(S_n; 27+5*x, 27+5*x^2, ...)+10*Z(S_n; 13+3*x, 27+5*x^2, 13+3*x^3, 27+5*x^4, ...)+15*Z(S_n; 7+x, 27+5*x^2, 7+x^3, 27+5*x^4, ...)+20*Z(S_n; 6+2*x, 6+2*x^2, 27+5*x^3, 6+2*x^4, 6+2*x^5, 27+5*x^6, ...)+20*Z(S_n; 4, 6+2*x^2, 13+3*x^3, 6+2*x^4, 4, 27+5*x^6, 4, 6+2*x^8, 13+3*x^9, 6+2*x^10, 4, 27+5*x^12, ...)+30*Z(S_n; 3+x, 7+x^2, 3+x^3, 27+5*x^4, 3+x^5, 7+x^6, 3+x^7, 27+5*x^8, ...)+24*Z(S_n; 2, 2, 2, 2, 27+5*x^5, 2, 2, 2, 2, 27+5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.

A057223 Number of 4 X n binary matrices without unit columns up to row and column permutations.

Original entry on oeis.org

1, 4, 14, 44, 127, 335, 830, 1931, 4258, 8943, 17984, 34765, 64873, 117220, 205718, 351552, 586348, 956393, 1528350, 2396631, 3693123, 5599550, 8363304, 12317274, 17904795, 25710327, 36497466, 51255153, 71253960, 98113791, 133885404, 181147299, 243121170, 323807952, 428148174
Offset: 0

Views

Author

Vladeta Jovovic, Sep 18 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 4-covers of an unlabeled n-set that cover 4 points of that set uniquely (if offset is 4).

Crossrefs

Programs

  • PARI
    x='x+O('x^66); Vec(1/24*(1/(1-x)^12 + 8/(1-x)^3/(1-x^3)^3 + 6/(1-x)^6/(1-x^2)^3 + 3/(1-x)^4/(1-x^2)^4 + 6/(1-x)^2/(1-x^2)/(1-x^4)^2)) \\ Joerg Arndt, May 21 2013

Formula

1/24*(Z(S_n; 12, 12, ...) + 8*Z(S_n; 3, 3, 12, 3, 3, 12, ...) + 6*Z(S_n; 6, 12, 6, 12, ...) + 3*Z(S_n; 4, 12, 4, 12, ...) + 6*Z(S_n; 2, 4, 2, 12, 2, 4, 2, 12, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. : 1/24*(1/(1 - x)^12 + 8/(1 - x)^3/(1 - x^3)^3 + 6/(1 - x)^6/(1 - x^2)^3 + 3/(1 - x)^4/(1 - x^2)^4 + 6/(1 - x)^2/(1 - x^2)/(1 - x^4)^2).

Extensions

Added more terms, Joerg Arndt, May 21 2013

A164680 Expansion of x/((1-x)^3*(1-x^2)^3*(1-x^3)).

Original entry on oeis.org

1, 3, 9, 20, 42, 78, 139, 231, 372, 573, 861, 1254, 1791, 2499, 3432, 4629, 6162, 8085, 10492, 13455, 17094, 21503, 26832, 33201, 40795, 49764, 60333, 72687, 87096, 103785, 123075, 145236, 170646, 199626, 232617, 269997, 312277, 359898, 413448, 473438
Offset: 1

Views

Author

Alford Arnold, Aug 21 2009

Keywords

Comments

Convolution of A006918 with A001399, or of A002625 with A059841 (A000035 if offsets are respected),
or of A038163 with A022003 or of A057524 with A027656 or of A014125 with the aerated version of A000217,
or of A002624 with A103221, or of A002623 with A008731, or of other combinations of splitting the signature -/3,3,1 into two components.
If we apply the enumeration of Molien series as described in A139672,
this is row 45=9*5 of a table of values related to Molien series, i.e., the
product of the sequence on row 9 (A006918) with the sequence on row 5 (A001399).
This is associated with the root system E6, and can be described using the additive function on the affine E6 diagram:
1
|
2
|
1--2--3--2--1

Examples

			To calculate a(3), we consider the first three terms of A001399 = (1 1 2...)
and the first three terms of A006918 = (1 2 5 ...), to get the convolved a(3) = 1*5+1*2+2*1 = 9.
		

Crossrefs

Cf. A139672 (row 21).
For G2, the corresponding sequence is A001399.
For F4, the corresponding sequence is A115264.
For E7, the corresponding sequence is A210068.
For E8, the corresponding sequence is A045513.
See A210634 for a closely related sequence.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1-x)^3*(1-x^2)^3*(1-x^3)) )); // G. C. Greubel, Jan 13 2020
  • Maple
    seq(coeff(series(x/((1-x)^3*(1-x^2)^3*(1-x^3)), x, n+1), x, n), n = 1..40); # G. C. Greubel, Jan 13 2020
  • Mathematica
    Rest@CoefficientList[Series[x/((1-x)^3*(1-x^2)^3*(1-x^3)), {x,0,40}], x] (* G. C. Greubel, Jan 13 2020 *)
    LinearRecurrence[{3,0,-7,3,6,0,-6,-3,7,0,-3,1},{1,3,9,20,42,78,139,231,372,573,861,1254},40] (* Harvey P. Dale, Aug 03 2025 *)
  • PARI
    Vec(1/(1-x)^3/(1-x^2)^3/(1-x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    x=PowerSeriesRing(QQ, 'x', 40).gen()
    1/((1-x)^3*(1-x^2)^3*(1-x^3))
    

Formula

a(n) = round( -(-1)^n*(n+3)*(n+7)/256 +(6*n^6 +180*n^5 +2070*n^4 +11400*n^3 +30429*n^2 +34290*n +9785)/103680 ) - R. J. Mathar, Mar 19 2012

Extensions

Edited and extended by R. J. Mathar, Aug 22 2009
Corrected link to index entries - R. J. Mathar, Aug 26 2009

A057967 Triangle T(n,k) of numbers of minimal 4-covers of an unlabeled n+4-set that cover k points of that set uniquely (k=4,..,n+4).

Original entry on oeis.org

1, 3, 1, 10, 5, 2, 30, 21, 11, 3, 83, 75, 49, 18, 5, 208, 231, 177, 84, 30, 6, 495, 636, 554, 318, 143, 42, 9, 1101, 1603, 1540, 1023, 543, 210, 62, 11, 2327, 3737, 3907, 2904, 1759, 822, 311, 82, 15, 4685, 8163, 9153, 7470, 5012, 2706, 1219, 423, 111, 18, 9041
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2000

Keywords

Comments

Row sums give A005784.

Examples

			[1], [3, 1], [10, 5, 2], [30, 21, 11, 3], [83, 75, 49, 18], ...; there are 5 minimal 4-covers of an unlabeled 6-set that cover 5 points of that set uniquely.
		

Crossrefs

Formula

T(n, k) = b(n, k)-b(n-1, k); b(n, k) = coefficient of x^k in x^4/24*(Z(S_n; 12 + 4*x, 12 + 4*x^2, ...) + 8*Z(S_n; 3 + x, 3 + x^2, 12 + 4*x^3, 3 + x^4, 3 + x^5, 12 + 4*x^6, ...) + 6*Z(S_n; 6 + 2*x, 12 + 4*x^2, 6 + 2*x^3, 12 + 4*x^4, ...)
+ 3*Z(S_n; 4, 12 + 4*x^2, 4, 12 + 4*x^4, ...) + 6*Z(S_n; 2, 4, 2, 12 + 4*x^4, 2, 4, 2, 12 + 4*x^8, ...)), where Z(S_n; x_1, x_2, ..., x_n) is the cycle index of the symmetric group S_n of degree n.

A057972 Number of 5 X n binary matrices with 3 unit columns up to row and column permutations.

Original entry on oeis.org

3, 31, 252, 1776, 11048, 61106, 303664, 1368844, 5651241, 21559133, 76613440, 255411923, 803771681, 2400633464, 6837010458, 18644075466, 48855805143, 123415815229, 301386128354, 713271875603, 1639572164669, 3667859207856
Offset: 3

Views

Author

Vladeta Jovovic, Oct 21 2000

Keywords

Comments

A unit column of a binary matrix is a column with only one 1. First differences of a(n) give number of minimal 5 - covers of an unlabeled n - set that cover 8 points of that set uniquely (if offset is 8).

Crossrefs

Formula

Number of 5 x n binary matrices with k unit columns up to row and column permutations is coefficient of x^k in (1/5!)*(Z(S_n; 27 + 5*x, 27 + 5*x^2, ...) + 10*Z(S_n; 13 + 3*x, 27 + 5*x^2, 13 + 3*x^3, 27 + 5*x^4, ...) + 15*Z(S_n; 7 + x, 27 + 5*x^2, 7 + x^3, 27 + 5*x^4, ...) + 20*Z(S_n; 6 + 2*x, 6 + 2*x^2, 27 + 5*x^3, 6 + 2*x^4, 6 + 2*x^5, 27 + 5*x^6, ...) + 20*Z(S_n; 4, 6 + 2*x^2, 13 + 3*x^3, 6 + 2*x^4, 4, 27 + 5*x^6, 4, 6 + 2*x^8, 13 + 3*x^9, 6 + 2*x^10, 4, 27 + 5*x^12, ...) + 30*Z(S_n; 3 + x, 7 + x^2, 3 + x^3, 27 + 5*x^4, 3 + x^5, 7 + x^6, 3 + x^7, 27 + 5*x^8, ...) + 24*Z(S_n; 2, 2, 2, 2, 27 + 5*x^5, 2, 2, 2, 2, 27 + 5*x^10, ...)), where Z(S_n; x_1, x_2, ..., x_n) is cycle index of symmetric group S_n of degree n.
G.f. : x^3/120*(35/(1 - x^1)^27 + 130/(1 - x^1)^13/(1 - x^2)^7 + 45/(1 - x^1)^7/(1 - x^2)^10 + 100/(1 - x^1)^6/(1 - x^3)^7 + 20/(1 - x^1)^4/(1 - x^2)^1/(1 - x^3)^3/(1 - x^6)^2 + 30/(1 - x^1)^3/(1 - x^2)^2/(1 - x^4)^5).
Showing 1-10 of 15 results. Next