A337251 Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers.
75, 119, 551, 755, 4501, 4895, 16371, 56863, 61091, 74201, 201797, 336709, 534793, 596827, 879397, 1007541
Offset: 1
Examples
56863 is in the sequence because 56863^2 = 6213^2 + 32194^2 + 46458^2, 6213^3 + 32194^3 + 46458^3 = 51157^3 and gcd(6213, 32194, 46458) = 1.
Links
- A. Martin and R. Davis, Solution of problem 143, Jahrbuch über die Fortschritte der Mathematik, Band 29, Jahrgang 1898, pub. 1900, p. 157.
- Ed Pegg Jr.'s Math Puzzles, A^2 + B^2 + C^2 = Square, A^3 + B^3 + C^3 = Cube
- Seiji Tomita, A simultaneous equation {x^2+y^2+z^2=u^2, x^3+y^3+z^3=v^3} has infinitely many integer solutions.
Crossrefs
Cf. A096910.
Comments