cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mo Li

Mo Li's wiki page.

Mo Li has authored 4 sequences.

A337251 Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers.

Original entry on oeis.org

75, 119, 551, 755, 4501, 4895, 16371, 56863, 61091, 74201, 201797, 336709, 534793, 596827, 879397, 1007541
Offset: 1

Author

Mo Li, Aug 21 2020

Keywords

Comments

From Chai Wah Wu, Sep 04 2020: (Start)
A. Martin and R. Davis showed that 91091088729334859 = sqrt(11868013975030087^2+16269106368215226^2+88837226814909894^2) is a term (see Links).
Table of values for k, A, B, C, m:
k A B C m
---------------------------------------------
75 14 23 70 71
119 3 34 114 115
551 18 349 426 493
755 145 198 714 721
4501 1016 2364 3693 4013
4895 213 3450 3466 4357
16371 3542 9286 13009 14497
56863 6213 32194 46458 51157
61091 29233 29574 44754 51985
74201 32913 38444 54264 63185
201797 106677 117252 124876 168373
336709 110051 118044 295512 306467
534793 116457 286752 436136 476393
596827 202023 234550 510270 536023
879397 43472 613560 628485 782597
1007541 272267 417416 875656 914315
(End)

Examples

			56863 is in the sequence because 56863^2 = 6213^2 + 32194^2 + 46458^2, 6213^3 + 32194^3 + 46458^3 = 51157^3 and gcd(6213, 32194, 46458) = 1.
		

Crossrefs

Cf. A096910.

A333391 Longest side of primitive integer triangles with nonzero rational distances between three vertices and first isogonic center, sorted.

Original entry on oeis.org

73, 95, 152, 205, 208, 280, 285, 287, 296, 343, 361, 387, 407, 437, 469, 473, 485, 497, 507, 608, 624, 633, 645, 713, 715, 728, 728, 817, 873, 931, 1016, 1273, 1288, 1311, 1313, 1343, 1368, 1387, 1443, 1457, 1463, 1469, 1477, 1488, 1519, 1519, 1560, 1584, 1591, 1591
Offset: 1

Author

Mo Li, Mar 18 2020

Keywords

Examples

			Case 1: When the isogonic center is inside the triangle, i.e., the three internal angles are all less than 120 degrees. Example: Length of three sides (a, b, c) = (57, 65, 73), rational distances with signs (x, y, z) = (325/7, 264/7, 195/7);
Case 2: When the isogonic center is outside the triangle, i.e., an internal angle is greater than 120 degrees. Example: Lengths of three sides (a, b, c) = (43, 248, 285), rational distances with signs (x, y, z) = (1800/7, 345/7, -136/7);
Thus 73 and 285 are in this sequence.
a(26) = a(27) = 728 is the smallest longest side that appears twice because: (a, b, c) = (57, 673, 728) is a triple with (x, y, z) = (9016/13, 840/13, -561/13), and (a, b, c) = (403, 725, 728) is a triple with (x, y, z) = (203000/349, 81928/349, 80475/349). - _Jinyuan Wang_, Feb 12 2025
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(d); for(c=4, nn, for(b=(c+2)\2, c-1, for(a=c-b+1, b-1, if(gcd([a, b, c])==1 && a^2+b^2+a*b!=c^2 && issquare(6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4), &d) && issquare((a^2+b^2+c^2+d)/2), print1(c, ", "))))); \\ Jinyuan Wang, Feb 12 2025

Extensions

More terms from Jinyuan Wang, Feb 12 2025

A328499 The number of primitive Pythagorean triangles with perimeter less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Author

Mo Li, Oct 17 2019

Keywords

Comments

D. N. Lehmer has proved that the asymptotic density of a(n) is a(n)/n = log(2)/Pi^2 = 0.07023049... See A118858.

Examples

			For n=90, the triples are
   {3,  4,  5},  3 +  4 +  5 = 12 < 90
   {5, 12, 13},  5 + 12 + 13 = 30 < 90
   {7, 24, 25},  7 + 24 + 25 = 56 < 90
   {8, 15, 17},  8 + 15 + 17 = 40 < 90
   {9, 40, 41},  9 + 40 + 41 = 90
  {12, 35, 37}, 12 + 35 + 37 = 84 < 90
  {20, 21, 29}, 20 + 21 + 29 = 70 < 90
so a(90)=7.
		

Crossrefs

A307304 Number of inequivalent ways of placing 2 nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

0, 1, 4, 13, 31, 66, 123, 214, 346, 535, 790, 1131, 1569, 2128, 2821, 3676, 4708, 5949, 7416, 9145, 11155, 13486, 16159, 19218, 22686, 26611, 31018, 35959, 41461, 47580, 54345, 61816, 70024, 79033, 88876, 99621, 111303, 123994, 137731, 152590, 168610, 185871
Offset: 1

Author

Mo Li, Apr 19 2019

Keywords

Examples

			For n = 4 the a(4) = 13 solutions are
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,1,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{1,0,0,0}}  {{1,0,0,0}}  {{1,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,1}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{1,0,0,0}}  {{0,0,1,0}}  {{0,0,0,1}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
—————————————————————————————————————
{{0,1,0,0}}  {{0,1,0,0}}  {{0,1,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,0,0}}
{{0,0,1,0}}  {{0,0,0,1}}  {{0,0,0,0}}
{{0,0,0,0}}  {{0,0,0,0}}  {{0,0,1,0}}
—————————————————————————————————————
{{0,0,0,0}}
{{0,1,0,0}}
{{0,0,1,0}}
{{0,0,0,0}}
		

Crossrefs

Programs

  • Mathematica
    Table[
    Piecewise[{{(n (n^3 - 2 n^2 + 6 n - 4))/16, Mod[n, 2] == 0},
    {((n - 1) (n^3 - n^2 + 5 n - 1))/16, Mod[n, 2] == 1}}],{n, 20}]

Formula

a(n) = (1/16)*n*(n^3-2n^2+6n-4) if n is even;
a(n) = (1/16)*(n-1)*(n^3-n^2+5n-1) if n is odd.
G.f.: -x^2*(x^2+1)*(x^2+x+1)/((x+1)^2*(x-1)^5). - Alois P. Heinz, Apr 26 2019