A336328 Primitive triples for integer-sided triangles with A < B < C < 2*Pi/3 and such that FA + FB + FC is an integer where F is the Fermat point of the triangle.
57, 65, 73, 73, 88, 95, 43, 147, 152, 127, 168, 205, 97, 185, 208, 111, 221, 280, 49, 285, 296, 95, 312, 343, 296, 315, 361, 152, 343, 387, 323, 392, 407, 147, 377, 437, 285, 464, 469, 255, 343, 473, 247, 408, 485, 469, 589, 624, 403, 725, 728, 871, 901, 931
Offset: 1
Examples
The table begins: 57, 65, 73; 73, 88, 95; 43, 147, 152; 127, 168, 205; 97, 185, 208; 111, 221, 280; 49, 285, 296; ............. For first triple (57, 65, 73) and corresponding d = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, relation gives: 3*(57^4 + 65^4 + 73^4 + 112^4) = (57^2 + 65^2 + 73^2 + 112^2)^2 = 642470409.
References
- Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
Links
- Project Euler, Problem 143 - Investigating the Torricelli point of a triangle.
- Eric Weisstein's World of Mathematics, Fermat points.
Crossrefs
Cf. A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), A351801 (FA numerator), A351802 (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other FA + FB + FC).
Cf. A333391 (with isogonic center).
Formula
If FA + FB + FC = d, then
d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))), or,
d^2 = (1/2) * (a^2 + b^2 + c^2) + 2 * S * sqrt(3) where S = area of triangle ABC.
Comments