cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A163355 Permutation of integers for constructing Hilbert curve in N x N grid.

Original entry on oeis.org

0, 1, 3, 2, 14, 15, 13, 12, 4, 7, 5, 6, 8, 11, 9, 10, 16, 19, 17, 18, 20, 21, 23, 22, 30, 29, 31, 28, 24, 25, 27, 26, 58, 57, 59, 56, 54, 53, 55, 52, 60, 61, 63, 62, 50, 51, 49, 48, 32, 35, 33, 34, 36, 37, 39, 38, 46, 45, 47, 44, 40, 41, 43, 42, 234, 235, 233, 232, 236, 239
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Inverse: A163356. A163357 & A163359 give two variants of Hilbert curve in N x N grid. Cf. also A163332.
Second and third "powers": A163905, A163915.
In range [A000302(n-1)..A024036(n)] of this permutation, the number of cycles is given by A163910, number of fixed points seems to be given by A147600(n-1) (fixed points themselves: A163901). Max. cycle sizes is given by A163911 and LCM's of all cycle sizes by A163912.

Programs

  • Maple
    A057300 := proc(n)
        option remember;
        `if`(n=0, 0, procname(iquo(n, 4, 'r'))*4+[0, 2, 1, 3][r+1])
    end proc:
    A163355 := proc(n)
        option remember ;
        local d,base4,i,r ;
        if n <= 1 then
            return n ;
        end if;
        base4 := convert(n,base,4) ;
        d := op(-1,base4) ;
        i := nops(base4)-1 ;
        r := n-d*4^i ;
        if ( d=1 and type(i,even) ) or ( d=2 and type(i,odd)) then
            4^i+procname(A057300(r)) ;
        elif d= 3 then
            2*4^i+procname(A057300(r)) ;
        else
            3*4^i+procname(4^i-1-r) ;
        end if;
    end proc:
    seq(A163355(n),n=0..100) ; # R. J. Mathar, Nov 22 2023
  • PARI
    A057300(n) = { my(t=1, s=0); while(n>0,  if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A163355(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); if(((1==d)&&!(i%2))||((2==d)&&(i%2)), f+A163355(A057300(r)), if(3==d,f+f+A163355(A057300(r)), (3*f)+A163355(f-1-r)))); \\ Antti Karttunen, Apr 14 2018

Formula

a(0) = 0, and given d=1, 2 or 3, then a((d*(4^i))+r)
= (4^i) + a(A057300(r)), if d=1 and i is even, or if d=2 and i is odd
= 2*(4^i) + a(A057300(r)), if d=3,
= 3*(4^i) + a((4^i)-1-r) in other cases.
From Alan Michael Gómez Calderón, May 06 2025: (Start)
a(3*A000695(n)) = 2*A000695(n);
a(3*(A000695(n) + 2^A000695(2*m))) = 2*(A000695(n) + 2^A000695(2*m)) for m >= 2;
a((2 + 16^n)*2^(-1 + 4*m)) = 4^(2*(n + m) - 1) + (11*16^m - 2)/3. (End)

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A163356 Inverse permutation to A163355, related to Hilbert's curve in N x N grid.

Original entry on oeis.org

0, 1, 3, 2, 8, 10, 11, 9, 12, 14, 15, 13, 7, 6, 4, 5, 16, 18, 19, 17, 20, 21, 23, 22, 28, 29, 31, 30, 27, 25, 24, 26, 48, 50, 51, 49, 52, 53, 55, 54, 60, 61, 63, 62, 59, 57, 56, 58, 47, 46, 44, 45, 39, 37, 36, 38, 35, 33, 32, 34, 40, 41, 43, 42, 128, 130, 131, 129, 132, 133
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Inverse: A163355.
Second and third "powers": A163906, A163916. See also A059252-A059253.
In range [A000302(n-1)..A024036(n)] of this permutation, the number of cycles is given by A163910, number of fixed points seems to be given by A147600(n-1) (fixed points themselves: A163901). Max. cycle sizes is given by A163911 and LCM's of all cycle sizes by A163912.
Cf. also A302844, A302846, A302781.

Programs

  • PARI
    A057300(n) = { my(t=1,s=0); while(n>0, if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A163356(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); (((((2+(i%2))^d)%5)-1)*f) + if(3==d,f-1-A163356(r),A057300(A163356(r)))); \\ Antti Karttunen, Apr 14 2018

Formula

a(0) = 0, and provided that d=1, 2 or 3, then a((d*(4^i))+r) = (((2+(i mod 2))^d mod 5)-1) * [either A024036(i) - a(r), if d is 3, and A057300(a(r)) in other cases].
From Antti Karttunen, Apr 14 2018: (Start)
A059905(a(n)) = A059253(n).
A059906(a(n)) = A059252(n).
a(n) = A000695(A059253(n)) + 2*A000695(A059252(n)).
(End)

Extensions

Links to further derived sequences and a nicer Scheme function & formula added by Antti Karttunen, Sep 21 2009

A163912 Least common multiple of all cycle sizes in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356.

Original entry on oeis.org

1, 2, 6, 24, 36, 288, 432, 1728, 2592, 31104, 15552
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

A163910 Number of cycles in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356.

Original entry on oeis.org

1, 2, 3, 18, 30, 178, 306, 1864, 3214, 20032, 34708
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

A163891 Positions where A163890 obtains distinct new values.

Original entry on oeis.org

0, 2, 4, 5, 24, 33, 68, 76, 96, 390, 536, 561, 1092, 1093, 1156, 1220, 1554, 6242, 8465, 8584, 8977, 17953, 18500, 19564, 99396, 99873, 101444, 137286, 143633, 279620, 279622, 287108, 287248, 397585, 401796, 1597720, 1597969, 1598532
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

A163914 Number of 3-cycles in range [A000302(n-1)..A024036(n)] of permutation A163355/A163356.

Original entry on oeis.org

0, 0, 2, 1, 10, 9, 54, 57, 295, 329, 1613, 1834, 8812, 10072
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

a(n) = A163913(n)/3. Bisections: A163909, A163919. See also A163903, A163911, A163912, A163904, A163890.

A163896 Record values of A163894.

Original entry on oeis.org

0, 2, 4, 24, 33, 76, 390, 536, 1092, 6242, 17953, 137286, 143633
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2009

Keywords

Crossrefs

Showing 1-7 of 7 results.