cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A160089 The maximum of the absolute value of the coefficients of Pn = (1-x)(1-x^2)(1-x^3)...(1-x^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 19, 21, 28, 29, 34, 41, 50, 56, 68, 80, 100, 114, 135, 158, 196, 225, 269, 320, 388, 455, 544, 644, 786, 921, 1111, 1321, 1600, 1891, 2274, 2711, 3280, 3895, 4694, 5591, 6780, 8051, 9729, 11624
Offset: 0

Views

Author

Theodore Kolokolnikov, May 01 2009

Keywords

Comments

If n is even then a(n) is the absolute value of the coefficient of z^(n(n+1)/4). If n is odd, it is an open question as to which coefficient is a(n).
For odd n values, the Berkovich/Uncu reference provides explicit conjectural formulas for a(n). - Ali Uncu, Jul 19 2020

Crossrefs

Programs

  • Maple
    A160089 := proc(n)
            g := expand(mul( 1-x^k,k=1..n) );
            convert(PolynomialTools[CoefficientVector](g, x), list):
            max(op(map(abs, %)));
    end proc:
  • Mathematica
    p = 1; Flatten[{1, Table[p = Expand[p*(1 - x^n)]; Max[Abs[CoefficientList[p, x]]], {n, 1, 100}]}] (* Vaclav Kotesovec, May 03 2018 *)

Formula

a(n) >= A086376(n). - R. J. Mathar, Jun 01 2011
From Vaclav Kotesovec, May 04 2018: (Start)
a(n)^(1/n) tends to 1.2197...
Conjecture: a(n)^(1/n) ~ sqrt(A133871(n)^(1/n)) ~ 1.21971547612163368901359933...
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 12 2017

A369983 Maximum of the absolute value of the coefficients of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.

Original entry on oeis.org

1, 3, 8, 15, 44, 50, 117, 186, 356, 561, 972, 1761, 3508, 5789, 10470, 19023, 35580, 62388, 113418, 205653, 376496, 674085, 1226181, 2211462, 4056220, 7287672, 13261764, 24005627, 43800562, 79033269, 143513301, 260061408, 473603594, 855436899, 1553736558, 2813222766
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]]], {n, 0, 35}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^i)^3)))); \\ Michel Marcus, Feb 07 2024
    
  • Python
    from collections import Counter
    def A369983(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                d[j+k] -= 3*a
                d[j+2*k] += 3*a
                d[j+3*k] -= a
            c = d
        return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024

A156082 Maximum coefficient of the polynomial (-1)^(n+1)*Product_{k=1..n} (1 - x^k)^2.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 19, 24, 36, 52, 74, 103, 156, 223, 322, 470, 682, 992, 1448, 2120, 3072, 4494, 6538, 9584, 14001, 20400, 29928, 43774, 64032, 93968, 137520, 201766, 296236, 433746, 637812, 936334, 1373622, 2021344, 2968872, 4364300, 6422472
Offset: 1

Views

Author

Steven Finch, Feb 03 2009

Keywords

Crossrefs

Cf. A133871.

Programs

  • Maple
    P:= -1:
    for n from 1 to 100 do
      P:= expand(-P*(1-x^n)^2);
      A[n]:= max(coeffs(P,x));
    od:
    seq(A[i],i=1..100); # Robert Israel, Mar 02 2018
  • Mathematica
    Table[ -Min[CoefficientList[Expand[(-1)^n*Product[(1 - x^k)^2, {k, 1, n}]],x]], {n, 1, 50}]

Extensions

Name edited by Robert Israel, Mar 02 2018

A380499 Absolute value of the minimum coefficient of (1 - x)^2 * (1 - x^2)^2 * (1 - x^3)^2 * ... * (1 - x^n)^2.

Original entry on oeis.org

1, 2, 2, 6, 4, 12, 8, 24, 19, 44, 36, 78, 74, 148, 156, 286, 322, 556, 682, 1120, 1448, 2308, 3072, 4784, 6538, 10064, 14001, 21296, 29928, 45276, 64032, 96712, 137520, 207156, 296236, 444748, 637812, 956884, 1373622, 2062080, 2968872, 4450120, 6422472, 9616202, 13894990, 20802836
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 25 2025

Keywords

Crossrefs

Programs

  • Maple
    p:= proc(n) option remember;
         `if`(n=0, 1, expand(p(n-1)*(1-x^n)^2))
        end:
    a:= n-> abs(min(coeffs(p(n)))):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jan 25 2025
  • Mathematica
    Table[Min[CoefficientList[Product[(1 - x^k)^2, {k, 1, n}], x]], {n, 0, 45}] // Abs
  • PARI
    a(n) = abs(vecmin(Vec(prod(k=1, n, (1-x^k)^2)))); \\ Michel Marcus, Jan 25 2025
Showing 1-4 of 4 results.