cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A086376 Maximal coefficient of the polynomial (1-x)*(1-x^2)*...*(1-x^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 18, 21, 28, 29, 34, 41, 50, 56, 66, 80, 100, 114, 131, 158, 196, 225, 263, 320, 388, 455, 532, 644, 786, 921, 1083, 1321, 1600, 1891, 2218, 2711, 3280, 3895, 4588, 5591, 6780, 8051, 9519, 11624
Offset: 0

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 07 2003

Keywords

Crossrefs

Programs

  • Maple
    A086376 := proc(n)
            g := expand(mul( 1-x^k,k=1..n) );
            convert(PolynomialTools[CoefficientVector](g, x), list):
            max(%);
    end proc:
    seq(A086376(n),n=0..60) ; # R. J. Mathar, Jun 01 2011
  • Mathematica
    b[0] = 1; b[n_] := b[n] = b[n-1]*(1-x^n) // Expand;
    a[n_] := CoefficientList[b[n], x] // Max;
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 13 2017 *)
  • PARI
    a(n)=vecmax(Vec(prod(k=1,n,1-x^k)));
    vector(100,n,a(n-1)) \\ Joerg Arndt, Jan 31 2024

Extensions

More terms from Sascha Kurz, Sep 22 2003
a(0)=1 prepended by Alois P. Heinz, Apr 12 2017

A231599 T(n,k) is the coefficient of x^k in Product_{i=1..n} (1-x^i); triangle T(n,k), n >= 0, 0 <= k <= A000217(n), read by rows.

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -2, 0
Offset: 0

Views

Author

Marc Bogaerts, Nov 11 2013

Keywords

Comments

From Tilman Piesk, Feb 21 2016: (Start)
The sum of each row is 0. The even rows are symmetric; in the odd rows numbers with the same absolute value and opposed signum are symmetric to each other.
The odd rows where n mod 4 = 3 have the central value 0.
The even rows where n mod 4 = 0 have positive central values. They form the sequence A269298 and are also the rows maximal values.
A086376 contains the maximal values of each row, A160089 the maximal absolute values, and A086394 the absolute parts of the minimal values.
Rows of this triangle can be used to efficiently calculate values of A026807.
(End)

Examples

			For n=2 the corresponding polynomial is (1-x)*(1-x^2) = 1 -x - x^2 + x^3.
Irregular triangle starts:
  k    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
n
0      1
1      1  -1
2      1  -1  -1   1
3      1  -1  -1   0   1   1  -1
4      1  -1  -1   0   0   2   0   0  -1  -1   1
5      1  -1  -1   0   0   1   1   1  -1  -1  -1   0   0   1   1  -1
		

Crossrefs

Cf. A000217 (triangular numbers).
Cf. A086376, A160089, A086394 (maxima, etc.).
Cf. A269298 (central nonzero values).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))
            (expand(mul(1-x^i, i=1..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 22 2013
  • Mathematica
    Table[If[k == 0, 1, Coefficient[Product[(1 - x^i), {i, n}], x^k]], {n, 0, 6}, {k, 0, (n^2 + n)/2}] // Flatten (* Michael De Vlieger, Mar 04 2018 *)
  • PARI
    row(n) = pol = prod(i=1, n, 1 - x^i); for (i=0, poldegree(pol), print1(polcoeff(pol, i), ", ")); \\ Michel Marcus, Dec 21 2013
    
  • Python
    from sympy import poly, symbols
    def a231599_row(n):
        if n == 0:
            return [1]
        x = symbols('x')
        p = 1
        for i in range(1, n+1):
            p *= poly(1-x**i)
        p = p.all_coeffs()
        return p[::-1]
    # Tilman Piesk, Feb 21 2016

Formula

T(n,k) = [x^k] Product_{i=1..n} (1-x^i).
T(n,k) = T(n-1, k) + (-1)^n*T(n-1, n*(n+1)/2-k), n > 1. - Gevorg Hmayakyan, Feb 09 2017 [corrected by Giuliano Cabrele, Mar 02 2018]

A367843 Maximum of the absolute value of the coefficients of (1 - x^2) * (1 - x^3) * (1 - x^5) * ... * (1 - x^prime(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 8, 12, 18, 30, 46, 70, 113, 186, 314, 531, 894, 1561, 2705, 4817, 8514, 15030, 26502, 47200, 84698, 151809, 273961, 496807, 900596, 1643185, 2999837, 5498916, 10111429, 18596096, 34306158, 63585519, 118215700
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^Prime[k]), {k, 1, n}], x]]], {n, 0, 46}]
  • Python
    from collections import Counter
    from sympy import prime
    def A367843(n):
        c = {0:1}
        for k in range(1,n+1):
            p, b = prime(k), Counter(c)
            for j in c:
                b[j+p] -= c[j]
            c = b
        return max(map(abs,c.values())) # Chai Wah Wu, Feb 06 2024

A369983 Maximum of the absolute value of the coefficients of (1 - x)^3 * (1 - x^2)^3 * (1 - x^3)^3 * ... * (1 - x^n)^3.

Original entry on oeis.org

1, 3, 8, 15, 44, 50, 117, 186, 356, 561, 972, 1761, 3508, 5789, 10470, 19023, 35580, 62388, 113418, 205653, 376496, 674085, 1226181, 2211462, 4056220, 7287672, 13261764, 24005627, 43800562, 79033269, 143513301, 260061408, 473603594, 855436899, 1553736558, 2813222766
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^k)^3, {k, 1, n}], x]]], {n, 0, 35}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^i)^3)))); \\ Michel Marcus, Feb 07 2024
    
  • Python
    from collections import Counter
    def A369983(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                d[j+k] -= 3*a
                d[j+2*k] += 3*a
                d[j+3*k] -= a
            c = d
        return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024

A061553 Sum of absolute values of coefficients of expansion of (1-x)(1-x^2)(1-x^3)...(1-x^n).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 20, 28, 36, 44, 54, 72, 92, 104, 138, 176, 212, 268, 332, 416, 508, 628, 776, 968, 1192, 1480, 1836, 2288, 2812, 3472, 4292, 5312, 6572, 8120, 10028, 12388, 15300, 18860, 23276, 28740, 35468, 43732, 53954, 66540, 82016, 101044
Offset: 0

Views

Author

Steffen Eckmann (steffen.eckmann(AT)eon.com), May 17 2001

Keywords

Comments

a(n) >= A160089(n) with equality only for n=0. - Michel Marcus, Jun 12 2013

Examples

			a(1) = 1+1 = 2; a(4) = Length(P(4,x)) = Length(1 - x - x^2 + 2x^5 - x^8 - x^9 + x^10) = 1+1+1+2+1+1+1 = 8
		

Crossrefs

Programs

  • PARI
    a(n) = {pol = prod(i=1, n, 1-x^i); return (sum(i=0, poldegree(pol), abs(polcoeff(pol, i))));} \\ Michel Marcus, Jun 12 2013

Formula

a(n) := |c(n, 0)| + |c(n, 1)| + ... + |c(n, n(n+1)/2)| where c(n, j) are the coefficients of the polynomial P(n, x) := (1-x)(1-x^2)(1-x^3)...(1-x^n)

Extensions

a(0)=1 prepended by Seiichi Manyama, May 03 2018

A369986 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^4) * (1 - x^9) * ... * (1 - x^(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 14, 12, 14, 20, 20, 28, 40, 54, 63, 103, 100, 103, 129, 198, 225, 295, 363, 286, 433, 815, 629, 796, 1236, 1363, 1258, 1723, 2791, 3873, 5244, 6409, 6236, 9724, 13800, 18153, 22993, 23120, 28173, 49135, 46042
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^(k^2)), {k, 1, n}], x]]], {n, 0, 54}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i^2)))))); \\ Michel Marcus, Feb 07 2024

A369987 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^8) * (1 - x^27) * ... * (1 - x^(n^3)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 7, 7, 7, 8, 11, 18, 23, 28, 32, 40, 55, 58, 83, 118, 128, 171, 210, 327, 439, 555, 843, 1009, 1580, 2254, 3224, 4703, 6999, 4573, 6860, 7760, 12563, 15626, 24451, 33788, 48806, 51522, 84103, 120853, 171206, 312262, 306080, 464713, 657411, 892342
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^(k^3)), {k, 1, n}], x]]], {n, 0, 43}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i^3)))))); \\ Michel Marcus, Feb 07 2024
    
  • Python
    from collections import Counter
    def A369987(n):
        c = {0:1}
        for k in range(1,n+1):
            m, b = k**3, Counter(c)
            for j in c:
                b[j+m] -= c[j]
            c = b
        return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024

Extensions

More terms from Michel Marcus, Feb 07 2024

A369985 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^3) * (1 - x^6) * ... * (1 - x^(n*(n+1)/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 4, 5, 4, 8, 10, 9, 14, 16, 26, 36, 47, 51, 82, 48, 43, 49, 56, 94, 147, 152, 174, 120, 214, 268, 370, 580, 519, 598, 1024, 1217, 1750, 2473, 2417, 3340, 4795, 7086, 12978, 4808, 5675, 9373, 13083, 9644, 8762, 9516, 10702, 14483
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 07 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Abs[CoefficientList[Product[(1 - x^(k (k + 1)/2)), {k, 1, n}], x]]], {n, 0, 55}]
  • PARI
    a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i*(i+1)/2)))))); \\ Michel Marcus, Feb 07 2024
Showing 1-8 of 8 results.