cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Marc Bogaerts

Marc Bogaerts's wiki page.

Marc Bogaerts has authored 3 sequences.

A231599 T(n,k) is the coefficient of x^k in Product_{i=1..n} (1-x^i); triangle T(n,k), n >= 0, 0 <= k <= A000217(n), read by rows.

Original entry on oeis.org

1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 0, 2, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 1, 1, -1, -1, -1, 0, 0, 1, 1, -1, 1, -1, -1, 0, 0, 1, 0, 2, 0, -1, -1, -1, -1, 0, 2, 0, 1, 0, 0, -1, -1, 1, 1, -1, -1, 0, 0, 1, 0, 1, 1, 0, -1, -1, -2, 0
Offset: 0

Author

Marc Bogaerts, Nov 11 2013

Keywords

Comments

From Tilman Piesk, Feb 21 2016: (Start)
The sum of each row is 0. The even rows are symmetric; in the odd rows numbers with the same absolute value and opposed signum are symmetric to each other.
The odd rows where n mod 4 = 3 have the central value 0.
The even rows where n mod 4 = 0 have positive central values. They form the sequence A269298 and are also the rows maximal values.
A086376 contains the maximal values of each row, A160089 the maximal absolute values, and A086394 the absolute parts of the minimal values.
Rows of this triangle can be used to efficiently calculate values of A026807.
(End)

Examples

			For n=2 the corresponding polynomial is (1-x)*(1-x^2) = 1 -x - x^2 + x^3.
Irregular triangle starts:
  k    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
n
0      1
1      1  -1
2      1  -1  -1   1
3      1  -1  -1   0   1   1  -1
4      1  -1  -1   0   0   2   0   0  -1  -1   1
5      1  -1  -1   0   0   1   1   1  -1  -1  -1   0   0   1   1  -1
		

Crossrefs

Cf. A000217 (triangular numbers).
Cf. A086376, A160089, A086394 (maxima, etc.).
Cf. A269298 (central nonzero values).

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))
            (expand(mul(1-x^i, i=1..n))):
    seq(T(n), n=0..10);  # Alois P. Heinz, Dec 22 2013
  • Mathematica
    Table[If[k == 0, 1, Coefficient[Product[(1 - x^i), {i, n}], x^k]], {n, 0, 6}, {k, 0, (n^2 + n)/2}] // Flatten (* Michael De Vlieger, Mar 04 2018 *)
  • PARI
    row(n) = pol = prod(i=1, n, 1 - x^i); for (i=0, poldegree(pol), print1(polcoeff(pol, i), ", ")); \\ Michel Marcus, Dec 21 2013
    
  • Python
    from sympy import poly, symbols
    def a231599_row(n):
        if n == 0:
            return [1]
        x = symbols('x')
        p = 1
        for i in range(1, n+1):
            p *= poly(1-x**i)
        p = p.all_coeffs()
        return p[::-1]
    # Tilman Piesk, Feb 21 2016

Formula

T(n,k) = [x^k] Product_{i=1..n} (1-x^i).
T(n,k) = T(n-1, k) + (-1)^n*T(n-1, n*(n+1)/2-k), n > 1. - Gevorg Hmayakyan, Feb 09 2017 [corrected by Giuliano Cabrele, Mar 02 2018]

A188581 Inverse Moebius transform of A000688, the number of factorizations of n into prime powers greater than 1.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 2, 7, 4, 4, 2, 8, 2, 4, 4, 12, 2, 8, 2, 8, 4, 4, 2, 14, 4, 4, 7, 8, 2, 8, 2, 19, 4, 4, 4, 16, 2, 4, 4, 14, 2, 8, 2, 8, 8, 4, 2, 24, 4, 8, 4, 8, 2, 14, 4, 14, 4, 4, 2, 16, 2, 4, 8, 30, 4, 8, 2, 8, 4, 8, 2, 28, 2, 4, 8, 8, 4, 8, 2, 24, 12, 4, 2, 16, 4, 4, 4, 14, 2, 16
Offset: 1

Author

Marc Bogaerts, Apr 04 2011

Keywords

Examples

			For n=8; the divisors of 8 are 1,2,4,8. There are 1,1,2,3 abelian groups of these orders respectively, so a(n) = 1+1+2+3 = 7.
		

Crossrefs

Programs

  • GAP
    trf:=function ( f, x )  # the Dirichlet convolution 1 * f
        local  d;
        d := DivisorsInt( x );
        return Sum( d, function ( i )
                return f( i );
            end );
    end;
    nra:=function ( x )     # the number of Abelian Groups of order(n)
        local  pp, ll;
        pp := PrimePowersInt( x );
        ll := [ 1 .. Size( pp ) / 2 ];
        return Product( List( 2 * ll, function ( i )
                  return NrPartitions( pp[i] );
              end ) );
    end;
    a:=function ( n )
        return trf( nra, n );
    end;
    
  • Maple
    with(combinat): with(numtheory):
    a:= n-> add(mul(numbpart(i[2]), i=ifactors(d)[2]), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 08 2011
  • Mathematica
    InverseMobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}]; Do[b[[i]] = Plus @@ a[[Divisors[i]]], {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; InverseMobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 07 2011 *)
    f[0] = 1; f[e_] := f[e] = f[e - 1] + PartitionsP[e]; a[1] = 1; a[n_] := Times @@ (f[Last[#]] & /@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    A000688(n)={local(f); f=factor(n); prod(i=1, matsize(f)[1], numbpart(f[i, 2]))}
    A188581(n)=sumdiv(n,d,A000688(d))
    r=vector(66,n,A188581(n)) /* show terms */ /* Joerg Arndt, Apr 08 2011 */

Formula

a(n) = Sum_{d | n} A000688(d).
Multiplicative with a(p^e) = A000070(e). - Amiram Eldar, Sep 09 2020
Dirichlet g.f.: zeta(s)^2 * Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ n*((log(n) + 2*gamma - 1)*f(1) + f'(1)), where f(1) = Product_{k>=2} zeta(k) = A021002 = 2.1955691982567064617939..., f'(1) = f(1) * Sum_{k>=2} k*zeta'(k)/zeta(k) = -5.0385164470942955610707128990779476296197... and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 21 2021

A188585 Moebius inversion of sequence A000688, the number of factorizations of n into prime powers greater than 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
Offset: 1

Author

Marc Bogaerts, Apr 04 2011

Keywords

Comments

Dirichlet convolution product of A000688 with the Moebius function.
It appears that a(n) is nonzero for n in A001694, the powerful numbers. - T. D. Noe, Apr 06 2011 [This is correct: a(n) > 0 if and only if n is in A001694. - Amiram Eldar, Jun 10 2025]
There is a similar sequence defined by b(n) = Product_{i} floor(e(i)/2) where n = Product_{p} p(i)^e(i) is the usual prime factorization, which differs from a(n) at n = 64, 128, 256, 512, 576, 729,.... - R. J. Mathar, Sep 18 2012 [This sequence is A365550. - Amiram Eldar, Jun 10 2025]
The number of unordered factorizations of n into 1 and prime powers p^e where p is prime and e >= 2 (A025475). - Amiram Eldar, Jun 10 2025

Programs

  • GAP
    mtrf:=function ( f, x )     # the Moebius inversion formula
        local  d;
        d := DivisorsInt( x );
        return Sum( d, function ( i )
                return f( i ) * MoebiusMu( (x / i) );
            end );
    end;
    nra:=function ( x )         # the number of Abelian groups of order x
        local  pp, ll;
        pp := PrimePowersInt( x );
        ll := [ 1 .. Size( pp ) / 2 ];
        return Product( List( 2 * ll, function ( i )
                  return NrPartitions( pp[i] );
              end ) );
    end;
    a:=function ( n )
        return mtrf( nra, n );
    end;
    
  • Maple
    with(numtheory): with(combinat):
    a:= n-> add(mobius(n/d) *mul(numbpart(i[2]),
            i=ifactors(d)[2]), d=divisors(n)):
    seq(a(n), n=1..110);  # Alois P. Heinz, Apr 07 2011
  • Mathematica
    MobiusTransform[a_List] := Module[{n = Length[a], b}, b = Table[0, {i, n}];Do[b[[i]] = Plus @@ (MoebiusMu[i/Divisors[i]] a[[Divisors[i]]]), {i, n}]; b]; A688[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; MobiusTransform[Array[A688, 100]] (* T. D. Noe, Apr 06 2011 *)
    f[p_, e_] := PartitionsP[e] - PartitionsP[e-1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 10 2025 *)
  • PARI
    a(n) = vecprod(apply(x -> numbpart(x)-numbpart(x-1), factor(n)[, 2])); \\ Amiram Eldar, Jun 10 2025
    
  • Python
    from math import prod
    from sympy import partition, factorint
    def A188585(n): return prod(partition(e)-partition(e-1) for e in factorint(n).values()) # Chai Wah Wu, Jun 10 2025

Formula

a(n) = Sum_{d|n} A008683(n/d) * A000688(d).
Dirichlet g.f.: Product_{k>=2} zeta(k*s). - Ilya Gutkovskiy, Nov 03 2020
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = Product_{k>=3} zeta(k/2) = 10.0301441966843566206076085895839492473559217336... - Vaclav Kotesovec, Apr 22 2025
Multiplicative with a(p^e) = A002865(e). - Amiram Eldar, Jun 10 2025