Giuliano Cabrele has authored 4 sequences.
A265644
Triangle read by rows: T(n,m) is the number of quaternary words of length n with m strictly increasing runs (0 <= m <= n).
Original entry on oeis.org
1, 0, 4, 0, 6, 10, 0, 4, 40, 20, 0, 1, 65, 155, 35, 0, 0, 56, 456, 456, 56, 0, 0, 28, 728, 2128, 1128, 84, 0, 0, 8, 728, 5328, 7728, 2472, 120, 0, 0, 1, 486, 8451, 27876, 23607, 4950, 165
Offset: 0
Triangle starts:
1;
0, 4;
0, 6, 10;
0, 4, 40, 20;
0, 1, 65, 155, 35;
0, 0, 56, 456, 456, 56;
.
T(3,2) = 40, which accounts for the following words:
[0 <= a <= 0, 1 | 0 <= b <= 1] = 2
[0 <= a <= 1, 2 | 0 <= b <= 2] = 6
[0 <= a <= 2, 3 | 0 <= b <= 3] = 12
[0 <= a <= 3 | 0, 1 <= b <= 3] = 12
[1 <= a <= 3 | 1, 2 <= b <= 3] = 6
[2 <= a <= 3 | 2, 3 <= b <= 3] = 2
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, p. 24, p. 154.
-
T:=(n,m)->_plus((-1)^(m-j)*binomial(n+1, m-j)*binomial(4*j, n)$j=0..m):
-
T(n, k) = sum(j=0, k, (-1)^(k-j)*binomial(n+1, k-j)*binomial(4*j, n));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Feb 09 2016
A262706
Triangle: Newton expansion of C(n,m)^5, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 30, 1, 0, 150, 240, 1, 0, 240, 6810, 1020, 1, 0, 120, 63540, 94890, 3120, 1, 0, 0, 271170, 2615340, 740640, 7770, 1, 0, 0, 604800, 32186070, 47271840, 4029690, 16800, 1, 0, 0, 730800, 214628400, 1281612570, 518276640, 17075940, 32760, 1, 0, 0, 453600, 859992000, 18459063000, 26947757970, 4027831080, 60171300, 59040, 1
Offset: 0
Triangle starts:
[1];
[0, 1];
[0, 30, 1];
[0, 150, 240, 1];
[0, 240, 6810, 1020, 1];
[0, 120, 63540, 94890, 3120, 1];
[0, 0, 271170, 2615340, 740640, 7770, 1];
Second diagonal (T_5(n+1,n)) is
A061167(n+1).
-
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^5: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
T5[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^5, {j, 0, n}]; Table[T5[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
// as a function
T_5:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^5 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
_P_5:=h->matrix([[binomial(n,m)^5 $m=0..h]$n=0..h]):
_T_5:=h->_P(h)^-1*_P_5(h):
-
T_5(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^5), ", ")); print())} \\ Colin Barker, Oct 01 2015
A262705
Triangle: Newton expansion of C(n,m)^4, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0
Triangle starts:
[1];
[0, 1];
[0, 14, 1];
[0, 36, 78, 1];
[0, 24, 978, 252, 1];
[0, 0, 4320, 8730, 620, 1];
[0, 0, 8460, 103820, 46890, 1290, 1];
Row sums are, by definition, the inverse binomial transform of
A005260.
Second diagonal (T_4(n+1,n)) is
A058895(n+1).
-
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
// as a function
T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
_P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]):
_T_4:=h->_P(h)^-1*_P_4(h):
-
T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015
A262704
Triangle: Newton expansion of C(n,m)^3, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 6, 1, 0, 6, 24, 1, 0, 0, 114, 60, 1, 0, 0, 180, 690, 120, 1, 0, 0, 90, 2940, 2640, 210, 1, 0, 0, 0, 5670, 21840, 7770, 336, 1, 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1, 0, 0, 0, 1680, 189000, 735210, 407400, 42084, 720, 1, 0, 0, 0, 0, 224700, 2835756, 4280850, 1284360, 83880, 990, 1
Offset: 0
Triangle starts:
n\m [0] [1] [2] [3] [4] [5] [6] [7] [8]
[0] 1;
[1] 0, 1;
[2] 0, 6, 1;
[3] 0, 6, 24, 1;
[4] 0, 0, 114, 60, 1;
[5] 0, 0, 180, 690, 120, 1;
[6] 0, 0, 90, 2940, 2640, 210, 1;
[7] 0, 0, 0, 5670, 21840, 7770, 336, 1;
[8] 0, 0, 0, 5040, 87570, 107520, 19236, 504, 1;
[9] ...
Row sums are
A172634, the inverse binomial transform of the Franel numbers (
A000172).
Second diagonal (T_3(n+1,n)) is
A007531 (n+2).
-
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^3: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
T3[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^3, {j, 0, n}]; Table[T3[n, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
// as a function
T_3:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^3 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
_P_3:=h->matrix([[binomial(n,m)^3 $m=0..h]$n=0..h]):
_T_3:=h->_P(h)^-1*_P_3(h):
-
T_3(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^3), ", ")); print())} \\ Colin Barker, Oct 01 2015
-
t3(n,m) = sum(j=0, n, (-1)^((n-j)%2)* binomial(n,j)*binomial(j,m)^3);
concat(vector(11, n, vector(n, k, t3(n-1,k-1)))) \\ Gheorghe Coserea, Jul 14 2016
Comments