A262705
Triangle: Newton expansion of C(n,m)^4, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 14, 1, 0, 36, 78, 1, 0, 24, 978, 252, 1, 0, 0, 4320, 8730, 620, 1, 0, 0, 8460, 103820, 46890, 1290, 1, 0, 0, 7560, 581700, 1159340, 185430, 2394, 1, 0, 0, 2520, 1767360, 13387570, 8314880, 595476, 4088, 1, 0, 0, 0, 3087000, 85806000, 170429490, 44341584, 1642788, 6552, 1
Offset: 0
Triangle starts:
[1];
[0, 1];
[0, 14, 1];
[0, 36, 78, 1];
[0, 24, 978, 252, 1];
[0, 0, 4320, 8730, 620, 1];
[0, 0, 8460, 103820, 46890, 1290, 1];
Row sums are, by definition, the inverse binomial transform of
A005260.
Second diagonal (T_4(n+1,n)) is
A058895(n+1).
-
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^4: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
T4[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^4, {j, 0, n}]; Table[T4[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
// as a function
T_4:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^4 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
_P_4:=h->matrix([[binomial(n,m)^4 $m=0..h]$n=0..h]):
_T_4:=h->_P(h)^-1*_P_4(h):
-
T_4(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^4), ", ")); print())} \\ Colin Barker, Oct 01 2015
A262706
Triangle: Newton expansion of C(n,m)^5, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 30, 1, 0, 150, 240, 1, 0, 240, 6810, 1020, 1, 0, 120, 63540, 94890, 3120, 1, 0, 0, 271170, 2615340, 740640, 7770, 1, 0, 0, 604800, 32186070, 47271840, 4029690, 16800, 1, 0, 0, 730800, 214628400, 1281612570, 518276640, 17075940, 32760, 1, 0, 0, 453600, 859992000, 18459063000, 26947757970, 4027831080, 60171300, 59040, 1
Offset: 0
Triangle starts:
[1];
[0, 1];
[0, 30, 1];
[0, 150, 240, 1];
[0, 240, 6810, 1020, 1];
[0, 120, 63540, 94890, 3120, 1];
[0, 0, 271170, 2615340, 740640, 7770, 1];
Second diagonal (T_5(n+1,n)) is
A061167(n+1).
-
[&+[(-1)^(n-j)*Binomial(n,j)*Binomial(j,m)^5: j in [0..n]]: m in [0..n], n in [0..10]]; // Bruno Berselli, Oct 01 2015
-
T5[n_, m_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[j, m]^5, {j, 0, n}]; Table[T5[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 01 2015 *)
-
// as a function
T_5:=(n,m)->_plus((-1)^(n-j)*binomial(n,j)*binomial(j,m)^5 $ j=0..n):
// as a matrix h x h
_P:=h->matrix([[binomial(n,m) $m=0..h]$n=0..h]):
_P_5:=h->matrix([[binomial(n,m)^5 $m=0..h]$n=0..h]):
_T_5:=h->_P(h)^-1*_P_5(h):
-
T_5(nmax) = {for(n=0, nmax, for(m=0, n, print1(sum(j=0, n, (-1)^(n-j)*binomial(n,j)*binomial(j,m)^5), ", ")); print())} \\ Colin Barker, Oct 01 2015
A274786
Diagonal of the rational function 1/(1 - (wxz + wy + wz + xy + xz + y + z)).
Original entry on oeis.org
1, 6, 114, 2940, 87570, 2835756, 96982116, 3446781624, 126047377170, 4712189770860, 179275447715364, 6918537571788024, 270178056420497316, 10656693484898995800, 423937118582497715400, 16989669600664370275440, 685277433339552643145490, 27797911234749454227812460, 1133299570662800455270517700
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
a[n_] := Sum[(-1)^j Binomial[2n, j] Binomial[j, n]^3, {j, n, 2n}];
(* or much faster *)
a[0] = 1; a[1] = 6; a[n_] := a[n] = (2*(2*n - 1)*(11*n^2 - 11*n + 3)*a[n - 1] + 4*(n - 1)*(2*n - 3)*(2*n - 1)*a[n - 2])/n^3;
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
-
a(n) = sum(j=n, 2*n, (-1)^(j)*binomial(2*n, 2*n - j)*binomial(j, n)^3);
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(w*x*z+w*y+w*z+x*y+x*z+y+z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(18, R, [x,y,z,w])
Showing 1-3 of 3 results.
Comments