A369987 Maximum of the absolute value of the coefficients of (1 - x) * (1 - x^8) * (1 - x^27) * ... * (1 - x^(n^3)).
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 7, 7, 7, 8, 11, 18, 23, 28, 32, 40, 55, 58, 83, 118, 128, 171, 210, 327, 439, 555, 843, 1009, 1580, 2254, 3224, 4703, 6999, 4573, 6860, 7760, 12563, 15626, 24451, 33788, 48806, 51522, 84103, 120853, 171206, 312262, 306080, 464713, 657411, 892342
Offset: 0
Keywords
Programs
-
Mathematica
Table[Max[Abs[CoefficientList[Product[(1 - x^(k^3)), {k, 1, n}], x]]], {n, 0, 43}]
-
PARI
a(n) = vecmax(apply(abs, Vec(prod(i=1, n, (1-x^(i^3)))))); \\ Michel Marcus, Feb 07 2024
-
Python
from collections import Counter def A369987(n): c = {0:1} for k in range(1,n+1): m, b = k**3, Counter(c) for j in c: b[j+m] -= c[j] c = b return max(map(abs,c.values())) # Chai Wah Wu, Feb 07 2024
Extensions
More terms from Michel Marcus, Feb 07 2024