cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Theodore Kolokolnikov

Theodore Kolokolnikov's wiki page.

Theodore Kolokolnikov has authored 2 sequences.

A160089 The maximum of the absolute value of the coefficients of Pn = (1-x)(1-x^2)(1-x^3)...(1-x^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 4, 3, 3, 4, 6, 5, 6, 7, 8, 8, 10, 11, 16, 16, 19, 21, 28, 29, 34, 41, 50, 56, 68, 80, 100, 114, 135, 158, 196, 225, 269, 320, 388, 455, 544, 644, 786, 921, 1111, 1321, 1600, 1891, 2274, 2711, 3280, 3895, 4694, 5591, 6780, 8051, 9729, 11624
Offset: 0

Author

Theodore Kolokolnikov, May 01 2009

Keywords

Comments

If n is even then a(n) is the absolute value of the coefficient of z^(n(n+1)/4). If n is odd, it is an open question as to which coefficient is a(n).
For odd n values, the Berkovich/Uncu reference provides explicit conjectural formulas for a(n). - Ali Uncu, Jul 19 2020

Crossrefs

Programs

  • Maple
    A160089 := proc(n)
            g := expand(mul( 1-x^k,k=1..n) );
            convert(PolynomialTools[CoefficientVector](g, x), list):
            max(op(map(abs, %)));
    end proc:
  • Mathematica
    p = 1; Flatten[{1, Table[p = Expand[p*(1 - x^n)]; Max[Abs[CoefficientList[p, x]]], {n, 1, 100}]}] (* Vaclav Kotesovec, May 03 2018 *)

Formula

a(n) >= A086376(n). - R. J. Mathar, Jun 01 2011
From Vaclav Kotesovec, May 04 2018: (Start)
a(n)^(1/n) tends to 1.2197...
Conjecture: a(n)^(1/n) ~ sqrt(A133871(n)^(1/n)) ~ 1.21971547612163368901359933...
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Apr 12 2017

A160235 The maximal coefficient of (1+x)*(1+x^4)*(1+x^9)*...*(1+x^(n^2)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 6, 9, 14, 21, 32, 54, 87, 144, 230, 383, 671, 1158, 1981, 3408, 6246, 10925, 19463, 34624, 63941, 114954, 208429, 380130, 707194, 1298600, 2379842, 4398644, 8253618, 15303057, 28453809, 53091455, 100061278, 187446097
Offset: 0

Author

Theodore Kolokolnikov, May 05 2009

Keywords

Crossrefs

Programs

  • Maple
    for N from 1 to 40 do
    p := expand(product(1+x^(n^2), n=1..N)):
    L:=convert(PolynomialTools[CoefficientVector](p, x), list):
    mmax := max(op(map(abs, L)));
    lprint(mmax):
    end:
  • Mathematica
    p = 1; Table[p = Expand[p*(1 + x^(n^2))]; Max[CoefficientList[p, x]], {n, 1, 50}] (* Vaclav Kotesovec, May 04 2018 *)
    nmax = 100; poly = ConstantArray[0, nmax*(nmax+1)*(2*nmax+1)/6 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, k*(k+1)*(2*k+1)/6, k^2, -1}]; Print[k, " ", Max[poly]], {k, 2, nmax}]; (* Vaclav Kotesovec, Dec 30 2022 *)

Formula

An asymptotic formula is a(n) ~ sqrt(10/Pi) * n^(-5/2) * 2^n. See for example the reference by Finch.
More precise asymptotics: a(n) ~ sqrt(10/Pi) * 2^n / n^(5/2) * (1 - 35/(18*n) + ...). - Vaclav Kotesovec, Dec 30 2022

Extensions

a(0)=1 prepended by Seiichi Manyama, Dec 26 2022