Original entry on oeis.org
0, 1, 3, 9, 25, 75, 235, 759, 2521, 8555, 29503, 103129, 364547, 1300819, 4679471, 16952161, 61790441, 226451035, 833918839, 3084255127, 11451630043, 42669225171, 159497648599, 597950875255, 2247724108771, 8470205600639
Offset: 0
From _Gus Wiseman_, Apr 15 2023: (Start)
The a(1) = 1 through a(3) = 9 subsets:
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,2,6}
{1,3,5}
{2,3,4}
{1,2,3,6}
{1,2,4,5}
{1,2,3,4,5}
(End)
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A327475 counts subsets with integer mean.
-
Table[Length[Select[Subsets[Range[2n]],Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 15 2023 *)
A000980
Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
Original entry on oeis.org
2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are:
{} {} {}
{0} {0} {0}
{-1,1} {-1,1}
{-1,0,1} {-2,2}
{-1,0,1}
{-2,0,2}
{-2,-1,1,2}
{-2,-1,0,1,2}
(End)
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Ray Chandler, Table of n, a(n) for n = 0..1668 (terms < 10^1000; terms 0..200 from T. D. Noe, terms 201..400 from Alois P. Heinz)
- Eunice Y. S. Chan and R. M. Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132 [math.CO], 2016.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. H. van Lint, Representations of 0 as Sum_{k = -N..N} epsilon_k*k, Proc. Amer. Math. Soc., 18 (1967), 182-184.
-
a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
-
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> 2*b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *)
nmax = 26; d = {2}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
A047653
Constant term in expansion of (1/2) * Product_{k=-n..n} (1 + x^k).
Original entry on oeis.org
1, 2, 4, 10, 26, 76, 236, 760, 2522, 8556, 29504, 103130, 364548, 1300820, 4679472, 16952162, 61790442, 226451036, 833918840, 3084255128, 11451630044, 42669225172, 159497648600, 597950875256, 2247724108772, 8470205600640, 31991616634296, 121086752349064
Offset: 0
- T. D. Noe, Alois P. Heinz and Ray Chandler, Table of n, a(n) for n = 0..1669 (terms < 10^1000, first 201 terms from T. D. Noe, next 200 terms from Alois P. Heinz)
- Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
- Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- R. P. Stanley, Weyl groups, the hard Lefschetz theorem and the Sperner property, SIAM J. Algebraic and Discrete Methods 1 (1980), 168-184.
For median instead of mean we have
A079309(n) + 1.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
-
f:=n->coeff( expand( mul((x^k+1/x^k)^2,k=1..n) ),x,0);
# second Maple program:
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0,
`if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1)))
end:
a:=n-> b(0, n):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[i == 0, 1, 2*b[n, i-1]+b[n+i, i-1]+b[Abs[n-i], i-1]]]; a[n_] := b[0, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Mar 10 2014, after Alois P. Heinz *)
nmax = 26; d = {1}; a1 = {};
Do[
i = Ceiling[Length[d]/2];
AppendTo[a1, If[i > Length[d], 0, d[[i]]]];
d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] +
2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n];
, {n, nmax}];
a1 (* Ray Chandler, Mar 15 2014 *)
Table[Length[Select[Subsets[Range[2n]],Length[#]==0||Mean[#]==n&]],{n,0,6}] (* Gus Wiseman, Apr 18 2023 *)
-
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)/2
-
{a(n)=sum(k=0,n*(n+1)/2,polcoeff(prod(m=1,n,1+x^m+x*O(x^k)),k)^2)} \\ Paul D. Hanna, Nov 30 2010
A002838
Balancing weights on the integer line.
Original entry on oeis.org
1, 2, 5, 12, 32, 94, 289, 910, 2934, 9686, 32540, 110780, 381676, 1328980, 4669367, 16535154, 58965214, 211591218, 763535450, 2769176514, 10089240974, 36912710568, 135565151486, 499619269774, 1847267563742, 6850369296298
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* This program is not convenient for large values of n *) a[n_] := Length[ IntegerPartitions[n*(n+1)/2, n, Range[n+1]]]; Table[ Print[{n, an = a[n]}]; an, {n, 1, 16}] (* Jean-François Alcover, Jan 02 2013 *)
A133406
Half the number of ways of placing up to n pawns on a length n chessboard row so that the row balances at its middle.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 10, 9, 26, 24, 76, 69, 236, 214, 760, 696, 2522, 2326, 8556, 7942, 29504, 27562, 103130, 96862, 364548, 344004, 1300820, 1232567, 4679472, 4449850, 16952162, 16171118, 61790442, 59107890, 226451036, 217157069, 833918840
Offset: 1
From _Gus Wiseman_, Apr 23 2023: (Start)
The a(1) = 1 through a(8) = 9 subsets:
{} {} {} {} {} {} {} {}
{1} {1,2} {2} {1,4} {3} {1,6}
{1,3} {2,3} {1,5} {2,5}
{1,2,3} {1,2,3,4} {2,4} {3,4}
{1,2,6} {1,2,4,7}
{1,3,5} {1,2,5,6}
{2,3,4} {1,3,4,6}
{1,2,3,6} {2,3,4,5}
{1,2,4,5} {1,2,3,4,5,6}
{1,2,3,4,5}
(End)
For median instead of mean we have
A361801 + 1, the doubling of
A024718.
Not counting the empty set gives
A362046 (shifted left).
-
Table[Length[Select[Subsets[Range[n]],Length[#]==0||Mean[#]==n/2&]],{n,0,10}] (* Gus Wiseman, Apr 23 2023 *)
-
a(n) = {polcoef(prod(k=1, n, 1 + 'x^(2*k-n-1)), 0)/2} \\ Andrew Howroyd, Jan 07 2023
Showing 1-5 of 5 results.
Comments