A237984 Number of partitions of n whose mean is a part.
1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
Offset: 1
Examples
a(6) counts these partitions: 6, 33, 321, 222, 111111. From _Gus Wiseman_, Sep 14 2019: (Start) The a(1) = 1 through a(10) = 8 partitions (A = 10): 1 2 3 4 5 6 7 8 9 A 11 111 22 11111 33 1111111 44 333 55 1111 222 2222 432 22222 321 3221 531 32221 111111 4211 111111111 33211 11111111 42211 52111 1111111111 (End)
Crossrefs
Programs
-
Mathematica
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
-
Python
from sympy.utilities.iterables import partitions def A237984(n): return sum(1 for s,p in partitions(n,size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023
Comments