A316413
Heinz numbers of integer partitions whose length divides their sum.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110
Offset: 1
Sequence of partitions whose length divides their sum begins (1), (2), (11), (3), (4), (111), (22), (31), (5), (6), (1111), (7), (8), (42), (51), (9), (33), (222), (411).
Cf.
A056239,
A067538,
A074761,
A143773,
A237984,
A289508,
A289509,
A290103,
A296150,
A298423,
A316428,
A316431.
-
isA326413 := proc(n)
psigsu := A056239(n) ;
psigle := numtheory[bigomega](n) ;
if modp(psigsu,psigle) = 0 then
true;
else
false;
end if;
end proc:
n := 1:
for i from 2 to 3000 do
if isA326413(i) then
printf("%d %d\n",n,i);
n := n+1 ;
end if;
end do: # R. J. Mathar, Aug 09 2019
# second Maple program:
q:= n-> (l-> nops(l)>0 and irem(add(i, i=l), nops(l))=0)(map
(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..110])[]; # Alois P. Heinz, Nov 19 2021
-
Select[Range[2,100],Divisible[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]],PrimeOmega[#]]&]
A359901
Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1
Triangle begins:
1
1 1
1 0 1
2 2 0 1
3 1 0 0 1
4 2 3 0 0 1
6 3 1 0 0 0 1
8 6 2 4 0 0 0 1
11 7 3 1 0 0 0 0 1
15 10 4 2 5 0 0 0 0 1
20 13 7 3 1 0 0 0 0 0 1
26 19 11 4 2 6 0 0 0 0 0 1
35 24 14 5 3 1 0 0 0 0 0 0 1
45 34 17 8 4 2 7 0 0 0 0 0 0 1
58 42 23 12 5 3 1 0 0 0 0 0 0 0 1
For example, row n = 9 counts the following partitions:
(7,1,1) (5,2,2) (3,3,3) (4,4,1) . . . . (9)
(6,1,1,1) (6,2,1) (4,3,2)
(3,3,1,1,1) (3,2,2,2) (5,3,1)
(4,2,1,1,1) (4,2,2,1)
(5,1,1,1,1) (4,3,1,1)
(3,2,1,1,1,1) (2,2,2,2,1)
(4,1,1,1,1,1) (3,2,2,1,1)
(2,2,1,1,1,1,1)
(3,1,1,1,1,1,1)
(2,1,1,1,1,1,1,1)
(1,1,1,1,1,1,1,1,1)
Including half-steps gives
A359893.
The median statistic is ranked by
A360005(n)/2.
A240219 counts partitions w/ the same mean as median, complement
A359894.
-
Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]
A327482
Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with mean d = A027750(n, k).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 1, 1, 7, 1, 1, 7, 5, 1, 1, 1, 1, 11, 15, 12, 6, 1, 1, 1, 1, 15, 7, 1, 1, 30, 19, 1, 1, 22, 34, 8, 1, 1, 1, 1, 30, 58, 27, 9, 1, 1, 1, 1, 42, 84, 64, 10, 1, 1, 105, 37, 1, 1, 56, 11, 1
Offset: 1
Triangle begins:
1
1 1
1 1
1 2 1
1 1
1 3 3 1
1 1
1 5 4 1
1 7 1
1 7 5 1
1 1
1 11 15 12 6 1
1 1
1 15 7 1
1 30 19 1
1 22 34 8 1
The version for subsets is
A327481.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]==d&]],{n,20},{d,Divisors[n]}]
A327473
Heinz numbers of integer partitions whose mean A326567/A326568 is a part.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 84, 89, 90, 97, 101, 103, 105, 107, 109, 110, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
11: {5}
13: {6}
16: {1,1,1,1}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
37: {12}
The enumeration of these partitions by sum is given by
A237984.
Subsets whose mean is a part are
A065795.
Numbers whose binary indices include their mean are
A327478.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],MemberQ[primeMS[#],Mean[primeMS[#]]]&]
A237113
Number of partitions of n such that some part is a sum of two other parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
Offset: 0
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3.
From _Gus Wiseman_, Aug 09 2023: (Start)
The a(0) = 0 through a(9) = 10 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(21111) (211111) (3221) (4311)
(4211) (5211)
(22211) (32211)
(32111) (42111)
(221111) (222111)
(2111111) (321111)
(2211111)
(21111111)
(End)
These partitions have ranks
A364462.
-
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,30}] (* Gus Wiseman, Aug 09 2023 *)
A362608
Number of integer partitions of n having a unique mode.
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0
The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (111) (22) (221) (33) (322)
(211) (311) (222) (331)
(1111) (2111) (411) (511)
(11111) (3111) (2221)
(21111) (3211)
(111111) (4111)
(22111)
(31111)
(211111)
(1111111)
For parts instead of multiplicities we have
A000041(n-1), ranks
A102750.
These partitions have ranks
A356862.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
-
Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
-
seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023
A327476
Heinz numbers of integer partitions whose mean A326567/A326568 is not a part.
Original entry on oeis.org
1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
6: {1,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
33: {2,5}
34: {1,7}
35: {3,4}
36: {1,1,2,2}
38: {1,8}
39: {2,6}
40: {1,1,1,3}
The enumeration of these partitions by sum is given by
A327472.
Subsets whose mean is not an element are
A327471.
Cf.
A056239,
A067538,
A112798,
A114639,
A237984,
A240851,
A316413,
A324756,
A324758,
A326567/
A326568,
A327477.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],!MemberQ[primeMS[#],Mean[primeMS[#]]]&]
A237668
Number of partitions of n such that some part is a sum of two or more other parts.
Original entry on oeis.org
0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 49, 60, 93, 115, 170, 210, 300, 370, 510, 632, 846, 1031, 1359, 1670, 2159, 2630, 3355, 4082, 5130, 6220, 7739, 9360, 11555, 13889, 16991, 20402, 24824, 29636, 35855, 42707, 51309, 60955, 72896, 86328, 102826, 121348
Offset: 0
a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(0) = 0 through a(9) = 13 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(3111) (31111) (3221) (4311)
(21111) (211111) (4211) (5211)
(22211) (32211)
(32111) (33111)
(41111) (42111)
(221111) (222111)
(311111) (321111)
(2111111) (411111)
(2211111)
(3111111)
(21111111)
(End)
These partitions have ranks
A364532.
For subsets instead of partitions we have
A364534, complement
A151897.
A299701 counts distinct subset-sums of prime indices.
-
z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m
(* Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,15}] (* Gus Wiseman, Aug 12 2023 *)
A000016
a(n) is the number of distinct (infinite) output sequences from binary n-stage shift register which feeds back the complement of the last stage.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586, 1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492, 9256396, 17895736, 34636834, 67108864, 130150588, 252645136, 490853416
Offset: 0
For n=3 the 2 output sequences are 000111000111... and 010101...
For n=5 the 4 output sequences are those with periodic parts {0000011111, 0001011101, 0010011011, 01}.
For n=6 there are 6 such sequences.
- B. D. Ginsburg, On a number theory function applicable in coding theory, Problemy Kibernetiki, No. 19 (1967), pp. 249-252.
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967, p. 172.
- J. Hedetniemi and K. R. Hutson, Equilibrium of shortest path load in ring network, Congressus Numerant., 203 (2010), 75-95. See p. 83.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Stoffer, Delay equations with rapidly oscillating stable periodic solutions, J. Dyn. Diff. Eqs. 20 (1) (2008) 201, eq. (39)
- Seiichi Manyama, Table of n, a(n) for n = 0..3334 (first 201 terms from T. D. Noe)
- Nicolás Álvarez, Victória Becher, Martín Mereb, Ivo Pajor, and Carlos Miguel Soto, On extremal factors of de Bruijn-like graphs, Univ. Buenos Aires (Argentina 2023). See also arXiv:2308.16257 [math.CO], 2023. See references.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 17.
- A. E. Brouwer, The Enumeration of Locally Transitive Tournaments, Math. Centr. Report ZW138, Amsterdam, 1980.
- S. Butenko, P. Pardalos, I. Sergienko, V. P. Shylo and P. Stetsyuk, Estimating the size of correcting codes using extremal graph problems, Optimization, 227-243, Springer Optim. Appl., 32, Springer, New York, 2009.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- Sébastien Designolle, Tamás Vértesi, and Sebastian Pokutta, Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms, arXiv:2310.20677 [quant-ph], 2023.
- T. M. A. Fink, Exact dynamics of the critical Kauffman model with connectivity one, arXiv:2302.05314 [cond-mat.stat-mech], 2023.
- R. W. Hall and P. Klingsberg, Asymmetric rhythms and tiling canons, Amer. Math. Monthly, 113 (2006), 887-896.
- A. A. Kulkarni, N. Kiyavash and R. Sreenivas, On the Varshamov-Tenengolts Construction on Binary Strings, 2013.
- E. M. Palmer and R. W. Robinson, Enumeration of self-dual configurations, Pacific J. Math., 110 (1984), 203-221.
- R. Pries and C. Weir, The Ekedahl-Oort type of Jacobians of Hermitian curves, arXiv preprint arXiv:1302.6261 [math.NT], 2013.
- N. J. A. Sloane, On single-deletion-correcting codes
- N. J. A. Sloane, Challenge Problems: Independent Sets in Graphs
- Yan Bo Ti, Gabriel Verret, and Lukas Zobernig, Abelian Varieties with p-rank Zero, arXiv:2203.08401 [math.NT], 2022.
- Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez, and Olga Basova, Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions, Linear Algebra Appl. 530, 414-444 (2017).
- Index entries for sequences related to tournaments
- Index entries for sequences related to necklaces
- Index entries for sequences related to subset sums modulo m
The main diagonal of table
A068009, the left edge of triangle
A053633.
Subsets whose mean is an element are
A065795.
Partitions containing their mean are
A237984.
Subsets containing n but not their mean are
A327477.
-
a000016 0 = 1
a000016 n = (`div` (2 * n)) $ sum $
zipWith (*) (map a000010 oddDivs) (map ((2 ^) . (div n)) $ oddDivs)
where oddDivs = a182469_row n
-- Reinhard Zumkeller, May 01 2012
-
A000016 := proc(n) local d, t; if n = 0 then return 1 else t := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t := t + NumberTheory:-Totient(d)* 2^(n/d)/(2*n) fi od; return t fi end:
-
a[0] = 1; a[n_] := Sum[Mod[k, 2] EulerPhi[k]*2^(n/k)/(2*n), {k, Divisors[n]}]; Table[a[n], {n, 0, 35}](* Jean-François Alcover, Feb 17 2012, after Pari *)
-
a(n)=if(n<1,n >= 0,sumdiv(n,k,(k%2)*eulerphi(k)*2^(n/k))/(2*n));
-
from sympy import totient, divisors
def A000016(n): return sum(totient(d)<>(~n&n-1).bit_length(),generator=True))//n if n else 1 # Chai Wah Wu, Feb 21 2023
A363225
Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 29, 43, 58, 81, 109, 148, 195, 263, 339, 445, 574, 744, 942, 1209, 1515, 1923, 2399, 3005, 3721, 4629, 5693, 7024, 8589, 10530, 12804, 15596, 18876, 22870, 27538, 33204, 39816, 47766, 57061, 68161, 81099, 96510, 114434, 135634
Offset: 0
The a(3) = 1 through a(9) = 14 partitions:
(21) (211) (221) (42) (421) (422) (63)
(2111) (321) (2221) (431) (432)
(2211) (3211) (521) (621)
(21111) (22111) (3221) (3321)
(211111) (4211) (4221)
(22211) (4311)
(32111) (5211)
(221111) (22221)
(2111111) (32211)
(42111)
(222111)
(321111)
(2211111)
(21111111)
For subsets of {1..n} we have
A093971,
A088809 without re-using parts.
The complement for subsets is
A007865,
A085489 without re-using parts.
For sums of any length > 1 (without re-usable parts) we have
A237668, complement
A237667.
The strict linear combination-free version is
A364350.
-
Table[Length[Select[IntegerPartitions[n],Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,15}]
-
from collections import Counter
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 21 2023
Showing 1-10 of 95 results.
Comments