cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bernd Mulansky

Bernd Mulansky's wiki page.

Bernd Mulansky has authored 4 sequences.

A373695 Number of incongruent n-sided "sporadic" Reinhardt polygons.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 144, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4392, 0, 0, 1308, 0, 0, 93, 0, 0, 0, 27, 0, 0, 0, 0, 153660, 0, 0, 315, 0, 0, 0, 0, 0, 161028, 0, 0, 0, 0
Offset: 1

Author

Bernd Mulansky, Aug 04 2024

Keywords

Comments

The first nonzero entries are a(30)=3, a(42)=9, a(45)=144, a(60)=4392. It is proved that a(2^a p^b)=0, if p is an odd prime, a,b>=0. Also a(pq)=0 and a(2pq)=(2^(p-1)-1)(2^(q-1)-1)/(pq), if p and q are distinct odd primes.

Crossrefs

Formula

a(n) = A374832(n) - A373694(n).

A373694 Number of incongruent n-sided periodic Reinhardt polygons.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 5, 1, 2, 10, 1, 1, 12, 4, 1, 23, 2, 1, 38, 1, 0, 64, 1, 12, 102, 1, 1, 191, 12, 1, 329, 1, 2, 633, 1, 1, 1088, 9, 34, 2057, 2, 1, 3771, 66, 12, 7156, 1, 1, 13464, 1, 1, 25503, 0, 193, 48179, 1, 2, 92206, 358, 1, 175792, 1, 1, 338202
Offset: 1

Author

Bernd Mulansky, Aug 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    dD[m_] := 2^Floor[(m - 3)/2] + Sum[2^(m/d) EulerPhi[d], {d, DeleteCases[Divisors[m], _?EvenQ]}]/4/m;
    a[n_] := Sum[dD[n/d] MoebiusMu[2 d], {d, DeleteCases[Divisors[n], 1]}];

Formula

a(n) = A374832(n) - A373695(n).
a(n) = Sum_{d|n, d>1} D(n/d)*Mu(2d), with D(m) = 2^floor((m-3)/2) + (Sum_{d|m, d odd} 2^(m/d)*Phi(d) )/(4m), where Mu is MoebiusMu and Phi is EulerPhi.

A374832 Number of incongruent n-sided Reinhardt polygons.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 5, 1, 2, 10, 1, 1, 12, 4, 1, 23, 2, 1, 41, 1, 0, 64, 1, 12, 102, 1, 1, 191, 12, 1, 338, 1, 2, 777, 1, 1, 1088, 9, 34, 2057, 2, 1, 3771, 66, 12, 7156, 1, 1, 17856, 1, 1, 26811, 0, 193, 48272, 1, 2, 92206, 385, 1, 175792
Offset: 1

Author

Bernd Mulansky, Jul 21 2024

Keywords

References

  • Karl Reinhardt, Extremale Polygone gegebenen Durchmessers. Jahresber. Deutsche Math.-Verein. 31 (1922): 251-70.

Crossrefs

Formula

a(n) = A373694(n) + A373695(n). - Bernd Mulansky, Aug 23 2024

Extensions

More terms from Bernd Mulansky, Aug 23 2024

A345731 Additive bases: a(n) is the least integer such that there is an n-element set of integers between 0 and a(n), the sums of pairs (of distinct elements) of which are distinct.

Original entry on oeis.org

1, 2, 4, 7, 12, 18, 24, 34, 45, 57, 71, 86, 105, 126, 148
Offset: 2

Author

Bernd Mulansky, Jun 25 2021

Keywords

Comments

Such sets are known as weak Sidon sets, weak B_2 sets, or well-spread sequences.
n - 1 <= a(n) <= A003022(n). - Michael S. Branicky, Jun 25 2021

Examples

			a(6)=12 because 0-1-2-4-7-12 (0-5-8-10-11-12) resp. 0-1-2-6-9-12 (0-3-6-10-11-12) are shortest weak Sidon sets of size 6.
a(16)=148: [0, 3, 5, 6, 32, 49, 59, 68, 93, 106, 118, 126, 130, 134, 141, 148]. - _Zhao Hui Du_, Jul 27 2025
		

References

  • Alison M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, 2nd ed., 2013. See Section 2.3.
  • Xiaodong Xu, Meilian Liang, and Zehui Shao, On weak Sidon sequences, The Journal of Combinatorial Mathematics and Combinatorial Computing (2014), 107--113

Crossrefs

See A003022, A004133, and A004135 for other versions.

Programs

  • Mathematica
    a[n_Integer?NonNegative] := Module[{k = n - 1}, While[SelectFirst[Subsets[Range[0, k - 1], {n - 1}], Length@Union[Plus @@@ Subsets[#~Join~{k}, {2}]] >= (n*(n - 1))/2 &] === Missing["NotFound"], k++]; k];
    Table[a[n], {n, 2, 8}] (* Robert P. P. McKone, Nov 05 2023 *)
  • Python
    from itertools import combinations, count
    def a(n):
        for k in count(n-1):
            for c in combinations(range(k), n-1):
                c = c + (k,)
                ss = set()
                for s in combinations(c, 2):
                    if sum(s) in ss: break
                    else: ss.add(sum(s))
                if len(ss) == n*(n-1)//2: return k # use (k, c) for sets
    print([a(n) for n in range(2, 9)]) # Michael S. Branicky, Jun 25 2021

Extensions

a(16) corrected and a(17) deleted by Zhao Hui Du, Jul 27 2025