A373694 Number of incongruent n-sided periodic Reinhardt polygons.
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 5, 0, 1, 5, 1, 2, 10, 1, 1, 12, 4, 1, 23, 2, 1, 38, 1, 0, 64, 1, 12, 102, 1, 1, 191, 12, 1, 329, 1, 2, 633, 1, 1, 1088, 9, 34, 2057, 2, 1, 3771, 66, 12, 7156, 1, 1, 13464, 1, 1, 25503, 0, 193, 48179, 1, 2, 92206, 358, 1, 175792, 1, 1, 338202
Offset: 1
Keywords
Links
- Kevin G. Hare and Michael J. Mossinghoff, Sporadic Reinhardt Polygons, Discrete & Computational Geometry. An International Journal of Mathematics and Computer Science 49, no. 3 (2013): 540-57.
- Kevin G. Hare and Michael J. Mossinghoff, Most Reinhardt Polygons Are Sporadic, Geom. Dedicata 198 (2019): 1-18.
- Michael J. Mossinghoff, Enumerating Isodiametric and Isoperimetric Polygons, J. Combin. Theory Ser. A 118, no. 6 (2011): 1801-15.
- Michael Mossinghoff, I love Reinhardt Polygons, ICERM 2014.
- Wikipedia, Reinhardt polygon
Programs
-
Mathematica
dD[m_] := 2^Floor[(m - 3)/2] + Sum[2^(m/d) EulerPhi[d], {d, DeleteCases[Divisors[m], _?EvenQ]}]/4/m; a[n_] := Sum[dD[n/d] MoebiusMu[2 d], {d, DeleteCases[Divisors[n], 1]}];