cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A359901 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
   1
   1  1
   1  0  1
   2  2  0  1
   3  1  0  0  1
   4  2  3  0  0  1
   6  3  1  0  0  0  1
   8  6  2  4  0  0  0  1
  11  7  3  1  0  0  0  0  1
  15 10  4  2  5  0  0  0  0  1
  20 13  7  3  1  0  0  0  0  0  1
  26 19 11  4  2  6  0  0  0  0  0  1
  35 24 14  5  3  1  0  0  0  0  0  0  1
  45 34 17  8  4  2  7  0  0  0  0  0  0  1
  58 42 23 12  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (6,1,1,1)            (6,2,1)      (4,3,2)
  (3,3,1,1,1)          (3,2,2,2)    (5,3,1)
  (4,2,1,1,1)          (4,2,2,1)
  (5,1,1,1,1)          (4,3,1,1)
  (3,2,1,1,1,1)        (2,2,2,2,1)
  (4,1,1,1,1,1)        (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (2,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
Row sums are A325347.
The mean statistic is ranked by A326567/A326568.
Including half-steps gives A359893.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranks A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]

A237984 Number of partitions of n whose mean is a part.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

a(n) = 2 if and only if n is a prime.

Examples

			a(6) counts these partitions:  6, 33, 321, 222, 111111.
From _Gus Wiseman_, Sep 14 2019: (Start)
The a(1) = 1 through a(10) = 8 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      432        22222
                           321              3221      531        32221
                           111111           4211      111111111  33211
                                            11111111             42211
                                                                 52111
                                                                 1111111111
(End)
		

Crossrefs

Cf. A238478.
The Heinz numbers of these partitions are A327473.
A similar sequence for subsets is A065795.
Dominated by A067538.
The strict case is A240850.
Partitions without their mean are A327472.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
  • Python
    from sympy.utilities.iterables import partitions
    def A237984(n): return sum(1 for s,p in partitions(n,size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023

Formula

a(n) = A000041(n) - A327472(n). - Gus Wiseman, Sep 14 2019

A359902 Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  1  0  0  1
  2  1  0  0  1
  2  2  0  0  0  1
  4  2  1  0  0  0  1
  4  3  2  0  0  0  0  1
  7  4  3  1  0  0  0  0  1
  8  6  3  2  0  0  0  0  0  1
 12  8  4  3  1  0  0  0  0  0  1
 14 11  5  4  2  0  0  0  0  0  0  1
 21 14  8  4  3  1  0  0  0  0  0  0  1
 24 20 10  5  4  2  0  0  0  0  0  0  0  1
 34 25 15  6  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (3,3,1,1,1)          (6,2,1)      (4,3,2)
  (4,2,1,1,1)          (2,2,2,2,1)  (5,3,1)
  (5,1,1,1,1)          (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A002865(n-1).
Row sums are A027193 (odd-length ptns), strict A067659.
This is the odd-length case of A359901, with half-steps A359893.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.
A325347 counts partitions w/ integer median, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]

A362608 Number of integer partitions of n having a unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For parts instead of multiplicities we have A000041(n-1), ranks A102750.
For median instead of mode we have A238478, complement A238479.
These partitions have ranks A356862.
The complement is counted by A362607, ranks A362605.
For co-mode complement we have A362609, ranks A362606.
For co-mode we have A362610, ranks A359178.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=1} (Sum_{j>=1} x^(j*m)*(1 - x^j)/(1 - x^(j*m))) * (Product_{j>=1} (1 - x^(j*m))/(1 - x^j)). - Andrew Howroyd, May 04 2023

A327476 Heinz numbers of integer partitions whose mean A326567/A326568 is not a part.

Original entry on oeis.org

1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 106
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    6: {1,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   40: {1,1,1,3}
		

Crossrefs

Complement of A327473.
The enumeration of these partitions by sum is given by A327472.
Subsets whose mean is not an element are A327471.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!MemberQ[primeMS[#],Mean[primeMS[#]]]&]

A362610 Number of integer partitions of n having a unique part of least multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

Alternatively, these are partitions with a part appearing fewer times than each of the others.

Examples

			The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of multiplicities we have A002865, ranks A247180.
For median instead of co-mode we have A238478, complement A238479.
These partitions have ranks A359178.
For mode complement of co-mode we have A362607, ranks A362605.
For mode instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362609, ranks A362606.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023

A359894 Number of integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(8) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)
         (311)   (3111)   (331)     (422)
         (2111)  (21111)  (421)     (431)
                          (511)     (521)
                          (2221)    (611)
                          (3211)    (4211)
                          (4111)    (5111)
                          (22111)   (22211)
                          (31111)   (32111)
                          (211111)  (41111)
                                    (221111)
                                    (311111)
                                    (2111111)
		

Crossrefs

The complement is counted by A240219.
These partitions are ranked by A359890, complement A359889.
The odd-length case is ranked by A359892, complement A359891.
The odd-length case is A359896, complement A359895.
The strict case is A359898, complement A359897.
The odd-length strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284 and A058398 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.
A359909 counts factorizations with the same mean as median, odd-len A359910.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]

A362607 Number of integer partitions of n with more than one mode.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 13, 13, 23, 23, 33, 45, 56, 64, 90, 101, 137, 169, 208, 246, 320, 379, 469, 567, 702, 828, 1035, 1215, 1488, 1772, 2139, 2533, 3076, 3612, 4333, 5117, 6113, 7168, 8557, 10003, 11862, 13899, 16385, 19109, 22525, 26198, 30729, 35736
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9).
The a(3) = 1 through a(9) = 9 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)
              (41)  (51)    (52)   (62)    (63)
                    (321)   (61)   (71)    (72)
                    (2211)  (421)  (431)   (81)
                                   (521)   (432)
                                   (3311)  (531)
                                           (621)
                                           (32211)
                                           (222111)
		

Crossrefs

For parts instead of multiplicities we have A002865.
For median instead of mode we have A238479, complement A238478.
These partitions have ranks A362605.
The complement is counted by A362608, ranks A356862.
For co-mode we have A362609, ranks A362606.
For co-mode complement we have A362610, ranks A359178.
A000041 counts integer partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..51);  # Alois P. Heinz, May 05 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}]
  • PARI
    G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k)))));
    concat([0,0,0],Vec(sum(u=1,N, A_x(u))))}
    G_x(51) \\ John Tyler Rascoe, Apr 05 2024

Formula

G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - John Tyler Rascoe, Apr 05 2024

A349156 Number of integer partitions of n whose mean is not an integer.

Original entry on oeis.org

1, 0, 0, 1, 1, 5, 3, 13, 11, 21, 28, 54, 31, 99, 111, 125, 165, 295, 259, 488, 425, 648, 933, 1253, 943, 1764, 2320, 2629, 2962, 4563, 3897, 6840, 6932, 9187, 11994, 12840, 12682, 21635, 25504, 28892, 28187, 44581, 42896, 63259, 66766, 74463, 104278, 124752
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2021

Keywords

Comments

Equivalently, partitions whose length does not divide their sum.
By conjugation, also the number of integer partitions of n with greatest part not dividing n.

Examples

			The a(3) = 1 through a(8) = 11 partitions:
  (21)  (211)  (32)    (2211)   (43)      (332)
               (41)    (3111)   (52)      (422)
               (221)   (21111)  (61)      (431)
               (311)            (322)     (521)
               (2111)           (331)     (611)
                                (421)     (22211)
                                (511)     (32111)
                                (2221)    (41111)
                                (3211)    (221111)
                                (4111)    (311111)
                                (22111)   (2111111)
                                (31111)
                                (211111)
		

Crossrefs

Below, "!" means either enumerative or set theoretical complement.
The version for nonempty subsets is !A051293.
The complement is counted by A067538, ranked by A316413.
The geometric version is !A067539, strict !A326625, ranked by !A326623.
The strict case is !A102627.
The version for prime factors is A175352, complement A078175.
The version for distinct prime factors is A176587, complement A078174.
The ordered version (compositions) is !A271654, ranked by !A096199.
The multiplicative version (factorizations) is !A326622, geometric !A326028.
The conjugate is ranked by !A326836.
The conjugate strict version is !A326850.
These partitions are ranked by A348551.
A000041 counts integer partitions.
A326567/A326568 give the mean of prime indices, conjugate A326839/A326840.
A236634 counts unbalanced partitions, complement of A047993.
A327472 counts partitions not containing their mean, complement of A237984.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!IntegerQ[Mean[#]]&]],{n,0,30}]

Formula

a(n > 0) = A000041(n) - A067538(n).

A362612 Number of integer partitions of n such that the greatest part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 6, 6, 7, 9, 10, 12, 15, 16, 19, 23, 26, 32, 37, 41, 48, 58, 65, 75, 88, 101, 115, 135, 151, 176, 200, 228, 261, 300, 336, 385, 439, 498, 561, 641, 717, 818, 921, 1036, 1166, 1321, 1477, 1667, 1867, 2099, 2346, 2640, 2944, 3303, 3684
Offset: 0

Views

Author

Gus Wiseman, May 03 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(10) = 7 partitions (A = 10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    221    33      331      44        333        55
              1111  11111  222     2221     332       441        442
                           111111  1111111  2222      3321       3331
                                            22211     22221      22222
                                            11111111  111111111  222211
                                                                 1111111111
		

Crossrefs

For median instead of mode we have A053263, complement A237821.
These partitions have ranks A362616.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362607 counts partitions with more than one mode, ranks A362605.
A362608 counts partitions with a unique mode, ranks A356862.
A362611 counts modes in prime factorization.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Commonest[#]=={Max[#]}&]],{n,0,30}]
  • PARI
    A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, sum(j=1, N/i, x^(i*j)*prod(k=1,i-1,(1-x^(j*k))/(1-x^k))))); concat([0],Vec(g))}
    A_x(60) \\ John Tyler Rascoe, Apr 03 2024

Formula

G.f.: Sum_{i, j>0} x^(i*j) * Product_{k=1,i-1} ((1-x^(j*k))/(1-x^k)). - John Tyler Rascoe, Apr 03 2024
Showing 1-10 of 47 results. Next