cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A362608 Number of integer partitions of n having a unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 11, 16, 21, 29, 43, 54, 78, 102, 131, 175, 233, 295, 389, 490, 623, 794, 1009, 1255, 1579, 1967, 2443, 3016, 3737, 4569, 5627, 6861, 8371, 10171, 12350, 14901, 18025, 21682, 26068, 31225, 37415, 44617, 53258, 63313, 75235, 89173, 105645
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,3,2,1) has greatest multiplicity 2, and a unique part of multiplicity 2 (namely 3), so is counted under a(9).
The a(1) = 1 through a(7) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For parts instead of multiplicities we have A000041(n-1), ranks A102750.
For median instead of mode we have A238478, complement A238479.
These partitions have ranks A356862.
The complement is counted by A362607, ranks A362605.
For co-mode complement we have A362609, ranks A362606.
For co-mode we have A362610, ranks A359178.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=1, n, sum(j=1, n\m, x^(j*m)*(1-x^j)/(1 - x^(j*m)), A)*prod(j=1, n\m, (1 - x^(j*m))/(1 - x^j) + A)/prod(j=n\m+1, n, 1 - x^j + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=1} (Sum_{j>=1} x^(j*m)*(1 - x^j)/(1 - x^(j*m))) * (Product_{j>=1} (1 - x^(j*m))/(1 - x^j)). - Andrew Howroyd, May 04 2023

A362614 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 11, 3, 1, 0, 16, 4, 2, 0, 21, 6, 3, 0, 29, 8, 4, 1, 0, 43, 7, 5, 1, 0, 54, 13, 8, 2, 0, 78, 12, 8, 3, 0, 102, 17, 11, 5, 0, 131, 26, 12, 6, 1, 0, 175, 29, 17, 9, 1, 0, 233, 33, 18, 11, 2, 0, 295, 47, 25
Offset: 0

Views

Author

Gus Wiseman, May 04 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			Triangle begins:
   1
   0   1
   0   2
   0   2   1
   0   4   1
   0   5   2
   0   7   3   1
   0  11   3   1
   0  16   4   2
   0  21   6   3
   0  29   8   4   1
   0  43   7   5   1
   0  54  13   8   2
   0  78  12   8   3
   0 102  17  11   5
   0 131  26  12   6   1
   0 175  29  17   9   1
Row n = 8 counts the following partitions:
  (8)         (53)    (431)
  (44)        (62)    (521)
  (332)       (71)
  (422)       (3311)
  (611)
  (2222)
  (3221)
  (4211)
  (5111)
  (22211)
  (32111)
  (41111)
  (221111)
  (311111)
  (2111111)
  (11111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A002024.
Removing columns 0 and 1 and taking sums gives A362607, ranks A362605.
Column k = 1 is A362608, ranks A356862.
This statistic (mode-count) is ranked by A362611.
For co-modes we have A362615, ranked by A362613.
A008284 counts partitions by length.
A096144 counts partitions by number of minima, A026794 by maxima.
A238342 counts compositions by number of minima, A238341 by maxima.
A275870 counts collapsible partitions.

Programs

  • Mathematica
    msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]

Formula

Sum_{k=0..A003056(n)} k * T(n,k) = A372542. - Alois P. Heinz, May 05 2024

A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 2, 1, 0, 4, 1, 0, 5, 2, 0, 7, 3, 1, 0, 10, 4, 1, 0, 13, 7, 2, 0, 16, 11, 3, 0, 23, 14, 4, 1, 0, 30, 19, 6, 1, 0, 35, 29, 11, 2, 0, 50, 34, 14, 3, 0, 61, 46, 23, 5, 0, 73, 69, 27, 6, 1, 0, 95, 81, 44, 10, 1, 0, 123, 105, 53, 14, 2
Offset: 0

Views

Author

Gus Wiseman, May 04 2023

Keywords

Comments

We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			Triangle begins:
   1
   0   1
   0   2
   0   2   1
   0   4   1
   0   5   2
   0   7   3   1
   0  10   4   1
   0  13   7   2
   0  16  11   3
   0  23  14   4   1
   0  30  19   6   1
   0  35  29  11   2
   0  50  34  14   3
   0  61  46  23   5
   0  73  69  27   6   1
   0  95  81  44  10   1
Row n = 8 counts the following partitions:
  (8)         (53)     (431)
  (44)        (62)     (521)
  (332)       (71)
  (422)       (3221)
  (611)       (3311)
  (2222)      (4211)
  (5111)      (32111)
  (22211)
  (41111)
  (221111)
  (311111)
  (2111111)
  (11111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A002024.
Removing columns 0 and 1 and taking sums gives A362609, ranks A362606.
Column k = 1 is A362610, ranks A359178.
This statistic (co-mode count) is ranked by A362613.
For mode instead of co-mode we have A362614, ranked by A362611.
A008284 counts partitions by length.
A096144 counts partitions by number of minima, A026794 by maxima.
A238342 counts compositions by number of minima, A238341 by maxima.
A275870 counts collapsible partitions.

Programs

  • Mathematica
    comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]

Formula

Sum_{k=0..A003056(n)} k * T(n,k) = A372632(n). - Alois P. Heinz, May 07 2024

A362610 Number of integer partitions of n having a unique part of least multiplicity.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 23, 30, 35, 50, 61, 73, 95, 123, 139, 187, 216, 269, 328, 411, 461, 594, 688, 836, 980, 1211, 1357, 1703, 1936, 2330, 2697, 3253, 3649, 4468, 5057, 6005, 6841, 8182, 9149, 10976, 12341, 14508, 16447, 19380, 21611, 25553, 28628
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

Alternatively, these are partitions with a part appearing fewer times than each of the others.

Examples

			The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For parts instead of multiplicities we have A002865, ranks A247180.
For median instead of co-mode we have A238478, complement A238479.
These partitions have ranks A359178.
For mode complement of co-mode we have A362607, ranks A362605.
For mode instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362609, ranks A362606.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
  • PARI
    seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ Andrew Howroyd, May 04 2023

Formula

G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - Andrew Howroyd, May 04 2023

A362607 Number of integer partitions of n with more than one mode.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 4, 6, 9, 13, 13, 23, 23, 33, 45, 56, 64, 90, 101, 137, 169, 208, 246, 320, 379, 469, 567, 702, 828, 1035, 1215, 1488, 1772, 2139, 2533, 3076, 3612, 4333, 5117, 6113, 7168, 8557, 10003, 11862, 13899, 16385, 19109, 22525, 26198, 30729, 35736
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9).
The a(3) = 1 through a(9) = 9 partitions:
  (21)  (31)  (32)  (42)    (43)   (53)    (54)
              (41)  (51)    (52)   (62)    (63)
                    (321)   (61)   (71)    (72)
                    (2211)  (421)  (431)   (81)
                                   (521)   (432)
                                   (3311)  (531)
                                           (621)
                                           (32211)
                                           (222111)
		

Crossrefs

For parts instead of multiplicities we have A002865.
For median instead of mode we have A238479, complement A238478.
These partitions have ranks A362605.
The complement is counted by A362608, ranks A356862.
For co-mode we have A362609, ranks A362606.
For co-mode complement we have A362610, ranks A359178.
A000041 counts integer partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0,
          add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i)))
        end:
    a:= n-> b(n$2, 0$2):
    seq(a(n), n=0..51);  # Alois P. Heinz, May 05 2024
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}]
  • PARI
    G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k)))));
    concat([0,0,0],Vec(sum(u=1,N, A_x(u))))}
    G_x(51) \\ John Tyler Rascoe, Apr 05 2024

Formula

G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - John Tyler Rascoe, Apr 05 2024

A362605 Numbers whose prime factorization has more than one mode. Numbers without a unique exponent of maximum frequency in the prime signature.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The prime indices of 180 are {1,1,2,2,3}, with modes {1,2}, so 180 is in the sequence, and the sequence differs from A182853.
The terms together with their prime indices begin:
     6: {1,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    21: {2,4}
    22: {1,5}
    26: {1,6}
    30: {1,2,3}
    33: {2,5}
    34: {1,7}
    35: {3,4}
    36: {1,1,2,2}
    38: {1,8}
    39: {2,6}
    42: {1,2,4}
    46: {1,9}
    51: {2,7}
    55: {3,5}
		

Crossrefs

The first term with bigomega n appears to be A166023(n).
The complement is A356862, counted by A362608.
For co-mode complement we have A359178, counted by A362610.
For co-mode we have A362606, counted by A362609.
Partitions of this type are counted by A362607.
These are the positions of terms > 1 in A362611.
A112798 lists prime indices, length A001222, sum A056239.
A362614 counts partitions by number of modes, ranks A362611.
A362615 counts partitions by number of co-modes, ranks A362613.

Programs

  • Maple
    q:= n-> (l-> nops(l)>1 and l[-1]=l[-2])(sort(map(i-> i[2], ifactors(n)[2]))):
    select(q, [$1..250])[];  # Alois P. Heinz, May 10 2023
  • Mathematica
    Select[Range[100],Count[Last/@FactorInteger[#], Max@@Last/@FactorInteger[#]]>1&]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); if(#e < 2, 0, e = vecsort(e); e[#e-1] == e[#e]);} \\ Amiram Eldar, Jan 20 2024
  • Python
    from sympy import factorint
    def ok(n): return n>1 and (e:=list(factorint(n).values())).count(max(e))>1
    print([k for k in range(155) if ok(k)]) # Michael S. Branicky, May 06 2023
    

A362609 Number of integer partitions of n with more than one part of least multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 19, 26, 42, 51, 74, 103, 136, 174, 246, 303, 411, 523, 674, 844, 1114, 1364, 1748, 2174, 2738, 3354, 4247, 5139, 6413, 7813, 9613, 11630, 14328, 17169, 20958, 25180, 30497, 36401, 44025, 52285, 62834, 74626, 89111, 105374, 125662
Offset: 0

Views

Author

Gus Wiseman, Apr 30 2023

Keywords

Comments

These are partitions where no part appears fewer times than all of the others.

Examples

			The partition (4,2,2,1) has least multiplicity 1, and two parts of multiplicity 1 (namely 1 and 4), so is counted under a(9).
The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (42111)
                                             (222111)
                                             (321111)
		

Crossrefs

For parts instead of multiplicities we have A117989, ranks A283050.
For median instead of co-mode we have A238479, complement A238478.
These partitions have ranks A362606.
For mode instead of co-mode we have A362607, ranks A362605.
For mode complement instead of co-mode we have A362608, ranks A356862.
The complement is counted by A362610, ranks A359178.
A000041 counts integer partitions.
A275870 counts collapsible partitions.
A359893 counts partitions by median.
A362611 counts modes in prime factorization, co-modes A362613.
A362614 counts partitions by number of modes, co-modes A362615.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]>1&]],{n,0,30}]

A237824 Number of partitions of n such that 2*(least part) >= greatest part.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 10, 11, 13, 14, 19, 18, 23, 25, 29, 30, 38, 37, 46, 48, 54, 57, 70, 69, 80, 85, 97, 100, 118, 118, 137, 144, 159, 168, 193, 195, 220, 233, 259, 268, 303, 311, 348, 367, 399, 419, 469, 483, 532, 560, 610, 639, 704, 732, 801, 841, 908, 954
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Comments

By conjugation, also the number of integer partitions of n whose greatest part appears at a middle position, namely at k/2, (k+1)/2, or (k+2)/2 where k is the number of parts. These partitions have ranks A362622. - Gus Wiseman, May 14 2023

Examples

			a(6) = 7 counts these partitions:  6, 42, 33, 222, 2211, 21111, 111111.
From _Gus Wiseman_, May 14 2023: (Start)
The a(1) = 1 through a(8) = 10 partitions such that 2*(least part) >= greatest part:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (211)   (221)    (42)      (322)      (53)
                    (1111)  (2111)   (222)     (2221)     (332)
                            (11111)  (2211)    (22111)    (422)
                                     (21111)   (211111)   (2222)
                                     (111111)  (1111111)  (22211)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part appears at a middle position:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (2211)    (2221)     (332)
                                     (111111)  (1111111)  (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
(End)
		

Crossrefs

The complement is counted by A237820, ranks A362982.
For modes instead of middles we have A362619, counted by A171979.
These partitions have ranks A362981.
A000041 counts integer partitions, strict A000009.
A325347 counts partitions with integer median, complement A307683.

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}]  (* A237820 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *)
    Table[Count[q[n], p_ /; 2 Min[p] == Max[p]], {n, z}] (* A118096 *)
    Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}]  (* A053263 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* this sequence *)
    (* or *)
    nmax = 100; Rest[CoefficientList[Series[Sum[x^k/Product[1 - x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 13 2025 *)
    (* or *)
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax+1)]; s += x^k/(1 - x^k)/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 14 2025 *)
  • PARI
    N=60; x='x+O('x^N);
    gf = sum(m=1, N, (x^m)/(1-x^m)) + sum(i=1, N, sum(j=1, i, x^((2*i)+j)/prod(k=0, j, 1 - x^(k+i))));
    Vec(gf) \\ John Tyler Rascoe, Mar 07 2024

Formula

G.f.: Sum_{m>0} x^m/(1-x^m) + Sum_{i>0} Sum_{j=1..i} x^((2*i)+j) / Product_{k=0..j} (1 - x^(k+i)). - John Tyler Rascoe, Mar 07 2024
G.f.: Sum_{k>=1} x^k / Product_{j=k..2*k} (1 - x^j). - Vaclav Kotesovec, Jun 13 2025
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4) * sqrt(2*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 14 2025

A363486 Low mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 2, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 3, 2, 1, 16, 2, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 3, 1, 4, 1, 22, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" in a multiset is its least mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360013, counted by A241131.
For greatest instead of least we have A363487.
The version for median is A363941, triangle A124943.
The high version for median is A363942, triangle A124944.
The version for mean instead of mode is A363943, high A363944.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,First[modes[prix[n]]]],{n,30}]

A360013 Numbers whose exponent of 2 in their canonical prime factorization is larger than all the other exponents.

Original entry on oeis.org

2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 104, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 184, 188, 192, 200, 204, 208, 212, 220, 224, 228, 232, 236, 240, 244, 248, 256
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) > A051903(A000265(k)).
The powers of 2 (A000079), except for 1, are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {2} and the subsequences of numbers m of the form 2^k*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 4*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 8*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} k/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 3.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.
Also even numbers whose multiset of prime factors has unique mode 2. - Gus Wiseman, Jul 10 2023

Examples

			From _Gus Wiseman_, Jul 09 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is missing because 2 is not the unique mode.
120 = 2*2*2*3*5 is present because its unique mode is 2.
The terms together with their prime factorizations begin:
   2 = 2
   4 = 2*2
   8 = 2*2*2
  12 = 2*2*3
  16 = 2*2*2*2
  20 = 2*2*5
  24 = 2*2*2*3
  28 = 2*2*7
  32 = 2*2*2*2*2
  40 = 2*2*2*5
  44 = 2*2*11
  48 = 2*2*2*2*3
  52 = 2*2*13
  56 = 2*2*2*7
  60 = 2*2*3*5
  64 = 2*2*2*2*2*2
(End)
		

Crossrefs

Equals A360015 \ A360014.
Partitions of this type are counted by A241131.
Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
Not requiring the mode to be unique gives A360015.
The opposite version is A362616, counted by A362612.
For co-mode instead of mode we have A364061, counted by A364062.
With least prime factor instead of 2, we have A364160, counted by A364193.
With a different factorization, we have the subsequence A335738.
A124010 gives prime signature, ordered A118914.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    q[n_] := Module[{e = IntegerExponent[n, 2], m}, m = n/2^e; (m == 1 && e > 0) || AllTrue[FactorInteger[m][[;; , 2]], # < e &]]; Select[Range[256], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); (m == 1 && e > 0) || (m > 1 && vecmax(factor(m)[,2]) < e)};

Formula

a(n) = 2*A360015(n). - Gus Wiseman, Jul 10 2023
Showing 1-10 of 34 results. Next