cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A360015 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximal exponent.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 92, 94, 96, 100, 102, 104, 106, 110, 112, 114, 116, 118, 120, 122, 124, 128, 130, 132, 134, 136, 138
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) = A051903(k).
The powers of 2 (A000079) are all terms.
The product of any two terms (not necessarily distinct) is also a term.
This sequence is a disjoint union of {1} and the subsequences of numbers m of the form 2^(k-1)*o where o = A000265(m), the odd part of m, is a k-free number, for k >= 2. These subsequences include, for k = 2, numbers of the form 2*o where o is an odd squarefree number (A056911); for k = 3, numbers of the form 4*o where o is an odd cubefree number; etc.
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*(2^k-1)) = 0.44541445377638761933... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} (k-1)/(zeta(k)*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*(2^k-1)) = 2.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
Also numbers whose multiset of prime factors has low (i.e. least) mode 2. Here, a mode in a multiset is an element that appears at least as many times as each of the others; for example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}. - Gus Wiseman, Jul 14 2023

Examples

			From _Gus Wiseman_, Jul 14 2023: (Start)
108 = 2*2*3*3*3 is missing because its mode is not 2.
180 = 2*2*3*3*5 is present because it has low mode 2.
The terms together with their prime factorizations begin:
   1 =
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  10 = 2*5
  12 = 2*2*3
  14 = 2*7
  16 = 2*2*2*2
  20 = 2*2*5
  22 = 2*11
  24 = 2*2*2*3
  26 = 2*13
  28 = 2*2*7
  30 = 2*3*5
  32 = 2*2*2*2*2
  34 = 2*17
  36 = 2*2*3*3
(End)
		

Crossrefs

Partitions of this type are counted by A241131.
The case of unique mode is A360013, complement here A360014.
For unique minimal prime exponent we have A364061, counted by A364062.
For minimal prime exponent we have A364158, counted by A364159.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.

Programs

  • Mathematica
    q[n_] := IntegerExponent[n, 2] == Max[FactorInteger[n][[;; , 2]]]; q[1] = True; Select[Range[150], q]
  • PARI
    is(n) = n == 1 || vecmax(factor(n)[,2]) == valuation(n, 2);

Formula

Disjoint union of A360013 and A360014.
a(n) = A360013(n)/2. - Gus Wiseman, Jul 14 2023

A363486 Low mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 1, 6, 1, 2, 1, 7, 2, 8, 1, 2, 1, 9, 1, 3, 1, 2, 1, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 1, 13, 1, 14, 1, 2, 1, 15, 1, 4, 3, 2, 1, 16, 2, 3, 1, 2, 1, 17, 1, 18, 1, 2, 1, 3, 1, 19, 1, 2, 1, 20, 1, 21, 1, 3, 1, 4, 1, 22, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124943, the "low mode" in a multiset is its least mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360013, counted by A241131.
For greatest instead of least we have A363487.
The version for median is A363941, triangle A124943.
The high version for median is A363942, triangle A124944.
The version for mean instead of mode is A363943, high A363944.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,First[modes[prix[n]]]],{n,30}]

A363487 High mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 2, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 4, 14, 1, 2, 9, 15, 1, 4, 3, 7, 1, 16, 2, 5, 1, 8, 10, 17, 1, 18, 11, 2, 1, 6, 5, 19, 1, 9, 4, 20, 1, 21, 12, 3, 1, 5, 6, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 04 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Extending the terminology of A124944, the "high mode" in a multiset is its greatest mode.

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A360015, counted by A241131.
For low instead of high mode we have A363486.
The version for low median is A363941, triangle A124943.
The version for high median is A363942, triangle A124944.
The version for mean instead of mode is A363944, low A363943.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A356862 ranks partitions with a unique mode, counted by A362608.
A362605 ranks partitions with more than one mode, counted by A362607.
A362606 ranks partitions with more than one co-mode, counted by A362609.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A362616 ranks partitions (max part) = (unique mode), counted by A362612.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[If[n==1,0,Last[modes[prix[n]]]],{n,30}]

A363949 Numbers whose prime indices have mean 1 when rounded down.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448, 480, 486, 504, 512, 528, 540, 560, 576, 600, 640
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A025065.
Before rounding down we had A326567/A326568.
For mode instead of mean we have A360015, counted by A241131.
For median instead of mean we have A363488, counted by A027336.
Positions of 1's in A363943, triangle A363945.
For the usual rounding (not low or high) we have A363948, counted by A363947.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
For mean 2 instead of 1 we have A363950, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==1&]

Formula

a(n) = 2*A344296(n).

A381437 Last part of the section-sum partition of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 3, 4, 1, 2, 4, 5, 1, 6, 5, 5, 1, 7, 2, 8, 1, 6, 6, 9, 1, 3, 7, 2, 1, 10, 6, 11, 1, 7, 8, 7, 3, 12, 9, 8, 1, 13, 7, 14, 1, 2, 10, 15, 1, 4, 3, 9, 1, 16, 2, 8, 1, 10, 11, 17, 1, 18, 12, 2, 1, 9, 8, 19, 1, 11, 8, 20, 1, 21, 13, 3, 1, 9, 9, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 28 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The prime indices of 972 are {1,1,2,2,2,2,2}, with section-sum partition (3,3,2,2,2), so a(972) = 2.
		

Crossrefs

Positions of first appearances are A008578.
The length of this partition is A051903.
The conjugate version is A051904.
For first instead of last part we get A066328.
These partitions are counted by A239455, complement A351293.
Positions of 1 are A360013, complement A381439.
This is the least prime index of A381431 (see A381432, A381433, A381434, A381435).
This is the last part of row n of A381436 (see A381440, A048767, A351294, A351295).
Counting partitions by this statistic gives A381438.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[If[n==1,0,Last[egs[prix[n]]]],{n,100}]

Formula

a(n) = A055396(A381431(n)).

A363950 Numbers whose prime indices have rounded-up mean 2.

Original entry on oeis.org

3, 6, 9, 10, 12, 18, 20, 24, 27, 28, 30, 36, 40, 48, 54, 56, 60, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 264, 270, 280, 288, 300, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     3: {2}
     6: {1,2}
     9: {2,2}
    10: {1,3}
    12: {1,1,2}
    18: {1,2,2}
    20: {1,1,3}
    24: {1,1,1,2}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
    81: {2,2,2,2}
		

Crossrefs

For mean 1 we have A000079 except 1.
Partitions of this type are counted by A026905 redoubled.
Equals the complement of A000079 in A344296.
Positions of 2's in A363944 (counted by column 2 of A363946).
For rounded mean 1 we have A363948, counted by A363947.
For rounded-down mean 1 we have A363949, counted by A025065.
The rounded-down or low version is A363954, counted by A363745.
A316413 ranks partitions with integer mean, counted by A067538.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Ceiling[Mean[prix[#]]]==2&]

A360014 Numbers whose exponent of 2 in their canonical prime factorization is equal to the maximum of the other exponents.

Original entry on oeis.org

1, 6, 10, 14, 22, 26, 30, 34, 36, 38, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 94, 100, 102, 106, 110, 114, 118, 122, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 180, 182, 186, 190, 194, 196, 202, 206, 210, 214, 216, 218, 222, 226, 230, 238, 246, 252
Offset: 1

Views

Author

Amiram Eldar, Jan 21 2023

Keywords

Comments

Numbers k such that A007814(k) = A051903(A000265(k)).
This sequence is a disjoint union of {1}, the even squarefree numbers (A039956), and the subsequences of even k-free numbers that are not (k-1)-free, for k >= 3. These subsequences include, for k = 3, numbers of the form 4*o where o is an odd cubefree number that is not squarefree (i.e., an odd term of A067259).
The asymptotic density of this sequence is Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 0.222707226888193809... .
The asymptotic mean of the exponent of 2 in the prime factorization of the terms of this sequence is Sum_{k>=2} (k-2)/(zeta(k)*2*(2^k-1)) / Sum_{k>=2} 1/(zeta(k)*2*(2^k-1)) = 1.10346728882748723133... . [corrected by Amiram Eldar, Jul 10 2025]
This sequence is a subsequence of A360015 and the asymptotic density of this sequence within A360015 is exactly 1/2.

Crossrefs

Programs

  • Mathematica
    q[n_] := 2^(e = IntegerExponent[n, 2]) < n && e == Max[FactorInteger[n/2^e][[;; , 2]]]; q[1] = True; Select[Range[250], q]
  • PARI
    is(n) = {my(e = valuation(n, 2), m = n >> e); n == 1 ||(m > 1 && e == vecmax(factor(m)[,2]))};

A363488 Even numbers whose prime factorization has at least as many 2's as non-2's.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28, 32, 34, 36, 38, 40, 44, 46, 48, 52, 56, 58, 60, 62, 64, 68, 72, 74, 76, 80, 82, 84, 86, 88, 92, 94, 96, 100, 104, 106, 112, 116, 118, 120, 122, 124, 128, 132, 134, 136, 140, 142, 144, 146, 148, 152, 156, 158, 160
Offset: 1

Views

Author

Gus Wiseman, Jul 06 2023

Keywords

Comments

The multiset of prime factors of n is row n of A027746.
Also numbers whose prime factors have low median 2, where the low median (see A124943) is either the middle part (for odd length), or the least of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     2: {1}            34: {1,7}             72: {1,1,1,2,2}
     4: {1,1}          36: {1,1,2,2}         74: {1,12}
     6: {1,2}          38: {1,8}             76: {1,1,8}
     8: {1,1,1}        40: {1,1,1,3}         80: {1,1,1,1,3}
    10: {1,3}          44: {1,1,5}           82: {1,13}
    12: {1,1,2}        46: {1,9}             84: {1,1,2,4}
    14: {1,4}          48: {1,1,1,1,2}       86: {1,14}
    16: {1,1,1,1}      52: {1,1,6}           88: {1,1,1,5}
    20: {1,1,3}        56: {1,1,1,4}         92: {1,1,9}
    22: {1,5}          58: {1,10}            94: {1,15}
    24: {1,1,1,2}      60: {1,1,2,3}         96: {1,1,1,1,1,2}
    26: {1,6}          62: {1,11}           100: {1,1,3,3}
    28: {1,1,4}        64: {1,1,1,1,1,1}    104: {1,1,1,6}
    32: {1,1,1,1,1}    68: {1,1,7}          106: {1,16}
		

Crossrefs

Partitions of this type are counted by A027336.
The case without high median > 1 is A072978.
For mode instead of median we have A360015, high A360013.
Positions of 1's in A363941.
For mean instead of median we have A363949, high A000079.
The high version is A364056, positions of 1's in A363942.
A067538 counts partitions with integer mean, ranks A316413.
A112798 lists prime indices, length A001222, sum A056239.
A124943 counts partitions by low median, high A124944.
A363943 gives low mean of prime indices, triangle A363945.

Programs

  • Mathematica
    Select[Range[100],EvenQ[#]&&PrimeOmega[#]<=2*FactorInteger[#][[1,2]]&]

A363948 Numbers whose prime indices have mean < 3/2.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms, prime indices, and means:
    2: {1} -> 1
    4: {1,1} -> 1
    8: {1,1,1} -> 1
   12: {1,1,2} -> 4/3
   16: {1,1,1,1} -> 1
   24: {1,1,1,2} -> 5/4
   32: {1,1,1,1,1} -> 1
   48: {1,1,1,1,2} -> 6/5
   64: {1,1,1,1,1,1} -> 1
   72: {1,1,1,2,2} -> 7/5
   80: {1,1,1,1,3} -> 7/5
   96: {1,1,1,1,1,2} -> 7/6
		

Crossrefs

These partitions are counted by A363947.
Prime indices have mean A326567/A326568.
For low mode we have A360015, high A360013.
Positions of 1's in A363489.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]<3/2&]

A364061 Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

Also numbers whose multiset of prime factors has unique co-mode 2. Here, a co-mode in a multiset is an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The terms together with their prime factors begin:
    2 = 2
    4 = 2*2
    8 = 2*2*2
   16 = 2*2*2*2
   18 = 2*3*3
   32 = 2*2*2*2*2
   50 = 2*5*5
   54 = 2*3*3*3
   64 = 2*2*2*2*2*2
   98 = 2*7*7
  108 = 2*2*3*3*3
  128 = 2*2*2*2*2*2*2
		

Crossrefs

For any unique co-mode: A359178, counted by A362610, complement A362606.
For high mode: A360013, positions of 1's in A363487, counted by A241131.
For low mode: A360015, positions of 1's in A363486, counted by A241131.
Partitions of this type are counted by A364062.
For low co-mode: A364158, positions of 1's in A364192, counted by A364159.
Positions of 1's in A364191, high A364192.
A112798 lists prime indices, length A001222, sum A056239.
A356862 ranks partitions w/ unique mode, count A362608, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.

Programs

  • Maple
    filter:= proc(n) local F,F2,Fo;
      F:= ifactors(n)[2];
      F2,Fo:= selectremove(t -> t[1]=2, F);
      Fo = [] or F2[1,2] < min(Fo[..,2])
    end proc:
    select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],comodes[prifacs[#]]=={2}&]
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A364061_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2))
    A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} (1-1/2^(k-1))*(s(k)-s(k+1)) = 1.16896822653093929144..., where s(k) = Product_{primes p >= 3} (1 + 1/(p^(k-1)*(p-1))) is the sum of reciprocals of the odd k-full numbers (numbers whose prime factorization has no exponent that is smaller than k). - Amiram Eldar, Aug 30 2024
Showing 1-10 of 22 results. Next