cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A363944 Mean of the multiset of prime indices of n, rounded up.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 2, 6, 3, 3, 1, 7, 2, 8, 2, 3, 3, 9, 2, 3, 4, 2, 2, 10, 2, 11, 1, 4, 4, 4, 2, 12, 5, 4, 2, 13, 3, 14, 3, 3, 5, 15, 2, 4, 3, 5, 3, 16, 2, 4, 2, 5, 6, 17, 2, 18, 6, 3, 1, 5, 3, 19, 3, 6, 3, 20, 2, 21, 7, 3, 4, 5, 3, 22, 2, 2, 7
Offset: 1

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Extending the terminology introduced at A124944, this is the "high mean" of prime indices.

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with mean 3/2, so a(360) = 2.
		

Crossrefs

Positions of first appearances are 1 and A000040.
Positions of 1's are A000079(n>0).
Before rounding up we had A326567/A326568.
For mode instead of mean we have A363487, low A363486.
For median instead of mean we have A363942, triangle A124944.
Rounding down instead of up gives A363943, triangle A363945.
The triangle for this statistic (high mean) is A363946.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363947 ranks partitions with rounded mean 1, counted by A363948.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[meanup[prix[n]],{n,100}]

A363942 High median in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 1, 6, 4, 3, 1, 7, 2, 8, 1, 4, 5, 9, 1, 3, 6, 2, 1, 10, 2, 11, 1, 5, 7, 4, 2, 12, 8, 6, 1, 13, 2, 14, 1, 2, 9, 15, 1, 4, 3, 7, 1, 16, 2, 5, 1, 8, 10, 17, 2, 18, 11, 2, 1, 6, 2, 19, 1, 9, 3, 20, 1, 21, 12, 3, 1, 5, 2, 22, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2023

Keywords

Comments

The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 90 are {1,2,2,3}, with high median 2, so a(90) = 2.
The prime indices of 150 are {1,2,3,3}, with high median 3, so a(150) = 3.
		

Crossrefs

Positions of first appearances are 1 and A000040.
The triangle for this statistic (high median) is A124944, low A124943.
Regular median of prime indices is A360005(n)/2.
For mode instead of median we have A363487, low A363486.
The low version is A363941.
For mean instead of median we have A363944, triangle A363946, low A363943.
A061395 give maximum prime index, A055396 minimum.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    merr[y_]:=If[Length[y]==0,0, If[OddQ[Length[y]],y[[(Length[y]+1)/2]],y[[1+Length[y]/2]]]];
    Table[merr[prix[n]],{n,100}]

A363949 Numbers whose prime indices have mean 1 when rounded down.

Original entry on oeis.org

2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448, 480, 486, 504, 512, 528, 540, 560, 576, 600, 640
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A025065.
Before rounding down we had A326567/A326568.
For mode instead of mean we have A360015, counted by A241131.
For median instead of mean we have A363488, counted by A027336.
Positions of 1's in A363943, triangle A363945.
For the usual rounding (not low or high) we have A363948, counted by A363947.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
For mean 2 instead of 1 we have A363950, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==1&]

Formula

a(n) = 2*A344296(n).

A363946 Triangle read by rows where T(n,k) is the number of integer partitions of n with high mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 3, 0, 1, 0, 1, 3, 2, 0, 1, 0, 1, 6, 3, 0, 0, 1, 0, 1, 6, 4, 3, 0, 0, 1, 0, 1, 11, 5, 4, 0, 0, 0, 1, 0, 1, 11, 13, 0, 4, 0, 0, 0, 1, 0, 1, 18, 9, 8, 5, 0, 0, 0, 0, 1, 0, 1, 18, 21, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2023

Keywords

Comments

Extending the terminology of A124944, the "high mean" of a multiset is obtained by taking the mean and rounding up.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  3  0  1
  0  1  3  2  0  1
  0  1  6  3  0  0  1
  0  1  6  4  3  0  0  1
  0  1 11  5  4  0  0  0  1
  0  1 11 13  0  4  0  0  0  1
  0  1 18  9  8  5  0  0  0  0  1
  0  1 18 21 10  0  5  0  0  0  0  1
  0  1 29 28 12  0  6  0  0  0  0  0  1
  0  1 29 32 18 14  0  6  0  0  0  0  0  1
  0  1 44 43 23 16  0  7  0  0  0  0  0  0  1
  0  1 44 77 27 19  0  0  7  0  0  0  0  0  0  1
Row n = 7 counts the following partitions:
  .  (1111111)  (4111)    (511)  (61)  .  .  (7)
                (3211)    (421)  (52)
                (31111)   (331)  (43)
                (2221)    (322)
                (22111)
                (211111)
		

Crossrefs

Row sums are A000041.
Column k = 2 is A026905 redoubled, ranks A363950.
For median instead of mean we have triangle A124944, low A124943.
For mode instead of mean we have rank stat A363486, high A363487.
For median instead of mean we have rank statistic A363942, low A363941.
The rank statistic for this triangle is A363944.
The version for low mean is A363945, rank statistic A363943.
For mode instead of mean we have triangle A363953, low A363952.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    meanup[y_]:=If[Length[y]==0,0,Ceiling[Mean[y]]];
    Table[Length[Select[IntegerPartitions[n],meanup[#]==k&]],{n,0,15},{k,0,n}]

A363948 Numbers whose prime indices have mean < 3/2.

Original entry on oeis.org

2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The initial terms, prime indices, and means:
    2: {1} -> 1
    4: {1,1} -> 1
    8: {1,1,1} -> 1
   12: {1,1,2} -> 4/3
   16: {1,1,1,1} -> 1
   24: {1,1,1,2} -> 5/4
   32: {1,1,1,1,1} -> 1
   48: {1,1,1,1,2} -> 6/5
   64: {1,1,1,1,1,1} -> 1
   72: {1,1,1,2,2} -> 7/5
   80: {1,1,1,1,3} -> 7/5
   96: {1,1,1,1,1,2} -> 7/6
		

Crossrefs

These partitions are counted by A363947.
Prime indices have mean A326567/A326568.
For low mode we have A360015, high A360013.
Positions of 1's in A363489.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A360005 gives twice the median of prime indices.
A363949 ranks partitions with low mean 1, counted by A025065.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]<3/2&]

A363951 Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.

Original entry on oeis.org

2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    2: {1}
    9: {2,2}
   10: {1,3}
   68: {1,1,7}
   78: {1,2,6}
   98: {1,4,4}
   99: {2,2,5}
  105: {2,3,4}
  110: {1,3,5}
  125: {3,3,3}
  328: {1,1,1,13}
  444: {1,1,2,12}
  558: {1,2,2,11}
  620: {1,1,3,11}
  783: {2,2,2,10}
  812: {1,1,4,10}
  870: {1,2,3,10}
  966: {1,2,4,9}
  988: {1,1,6,8}
		

Crossrefs

Partitions of this type are counted by A364055, without zeros A206240.
The RHS is A001222.
The LHS is A326567/A326568.
A008284 counts partitions by length, A058398 by mean.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, sum A056239.
A124943 counts partitions by low median, high A124944.
A316413 ranks partitions with integer mean, counted by A067538.
A326622 counts factorizations with integer mean, strict A328966.
A363950 ranks partitions with low mean 2, counted by A026905 redoubled.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]

A363745 Number of integer partitions of n whose rounded-down mean is 2.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Examples

			The a(2) = 1 through a(10) = 16 partitions:
  (2)  .  (22)  (32)  (222)  (322)  (332)   (3222)  (3322)
          (31)  (41)  (321)  (331)  (422)   (3321)  (3331)
                      (411)  (421)  (431)   (4221)  (4222)
                             (511)  (521)   (4311)  (4321)
                                    (611)   (5211)  (4411)
                                    (2222)  (6111)  (5221)
                                    (3221)          (5311)
                                    (3311)          (6211)
                                    (4211)          (7111)
                                    (5111)          (22222)
                                                    (32221)
                                                    (33211)
                                                    (42211)
                                                    (43111)
                                                    (52111)
                                                    (61111)
		

Crossrefs

For 1 instead of 2 we have A025065, ranks A363949.
The high version is A026905 reduplicated, ranks A363950.
Column k = 2 of A363945.
These partitions have ranks A363954.
A008284 counts partitions by length, A058398 by mean.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
A349156 counts partitions with non-integer mean, ranks A348551.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]

A126594 Floor of the average of the prime factors of n with multiplicity.

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 4, 4, 2, 17, 2, 19, 3, 5, 6, 23, 2, 5, 7, 3, 3, 29, 3, 31, 2, 7, 9, 6, 2, 37, 10, 8, 2, 41, 4, 43, 5, 3, 12, 47, 2, 7, 4, 10, 5, 53, 2, 8, 3, 11, 15, 59, 3, 61, 16, 4, 2, 9, 5, 67, 7, 13, 4, 71, 2, 73, 19, 4, 7, 9, 6, 79, 2, 3, 21, 83, 3, 11, 22, 16, 4, 89, 3, 10
Offset: 2

Views

Author

Cino Hilliard, Jan 06 2007

Keywords

Crossrefs

Cf. A067629 (rounding instead of flooring), A076690.
This is the floor of A123528/A123529.
Without multiplicity we have A363895.
For prime indices instead of factors we have A363943, triangle A363945.
Positions of first appearances are A364037.
The ceiling is A364156.
Positions of 2's are A364157, for prime indices A363949.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, ranks A316413.
A078175 lists numbers with integer mean of prime factors.

Programs

  • Mathematica
    Table[Floor[(Plus@@Times@@@FactorInteger[n])/PrimeOmega[n]], {n, 2, 90}] (* Alonso del Arte, May 21 2012 *)
  • PARI
    avg(n) = { local(x,j,ln) for(x=2,n,a=ifactor(x); ln=length(a); print1(floor(sum(j=1,ln,a[j])/ln)",")) } ifactor(n) = \The vector of the prime factors of n with multiplicity. { local(f,j,k,flist); flist=[]; f=Vec(factor(n)); for(j=1,length(f[1]), for(k = 1,f[2][j],flist = concat(flist,f[1][j]) ); ); return(flist) }

Formula

a(p^n)=p, p prime, n >= 1. - Philippe Deléham, Nov 23 2008
a(n) = floor(A001414(n)/A001222(n)). - Philippe Deléham, Nov 24 2008

A363954 Numbers whose prime indices have low mean 2.

Original entry on oeis.org

3, 9, 10, 14, 15, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 70, 75, 81, 84, 88, 90, 100, 104, 126, 132, 135, 136, 140, 150, 152, 156, 189, 196, 198, 204, 208, 210, 220, 225, 234, 243, 250, 252, 260, 264, 270, 272, 280, 294, 297, 300, 304, 308, 312, 315, 330, 350
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2023

Keywords

Comments

Extending the terminology of A124944, the "low mean" of a multiset is obtained by taking the mean and rounding down.

Examples

			The terms together with their prime indices begin:
     3: {2}
     9: {2,2}
    10: {1,3}
    14: {1,4}
    15: {2,3}
    27: {2,2,2}
    28: {1,1,4}
    30: {1,2,3}
    42: {1,2,4}
    44: {1,1,5}
    45: {2,2,3}
    50: {1,3,3}
    52: {1,1,6}
    63: {2,2,4}
    66: {1,2,5}
    70: {1,3,4}
    75: {2,3,3}
    81: {2,2,2,2}
    84: {1,1,2,4}
    88: {1,1,1,5}
    90: {1,2,2,3}
   100: {1,1,3,3}
		

Crossrefs

Partitions of this type are counted by A363745.
Positions of 2's in A363943 (high A363944), triangle A363945 (high A363946).
For mean 1 we have A363949.
The high version is A363950, counted by A026905.
A112798 lists prime indices, length A001222, sum A056239.
A316413 ranks partitions with integer mean, counted by A067538.
A326567/A326568 gives mean of prime indices.
A363941 gives low median of prime indices, triangle A124943.
A363942 gives high median of prime indices, triangle A124944.
A363948 lists numbers whose prime indices have mean 1, counted by A363947.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Floor[Mean[prix[#]]]==2&]

A364060 Triangle read by rows where T(n,k) is the number of integer partitions of n with rounded mean k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 0, 1, 0, 2, 4, 0, 0, 1, 0, 2, 5, 3, 0, 0, 1, 0, 4, 7, 0, 3, 0, 0, 1, 0, 4, 8, 5, 4, 0, 0, 0, 1, 0, 4, 14, 7, 4, 0, 0, 0, 0, 1, 0, 7, 21, 8, 0, 5, 0, 0, 0, 0, 1, 0, 7, 22, 11, 10, 0, 5, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2023

Keywords

Comments

We use the "rounding half to even" rule, see link.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  2  2  0  1
  0  2  4  0  0  1
  0  2  5  3  0  0  1
  0  4  7  0  3  0  0  1
  0  4  8  5  4  0  0  0  1
  0  4 14  7  4  0  0  0  0  1
  0  7 21  8  0  5  0  0  0  0  1
  0  7 22 11 10  0  5  0  0  0  0  1
  0  7 36 15 12  0  6  0  0  0  0  0  1
  0 12 32 36 14  0  6  0  0  0  0  0  0  1
  0 12 53 23 23 16  0  7  0  0  0  0  0  0  1
  0 12 80 30 27 19  0  0  7  0  0  0  0  0  0  1
Row n = 7 counts the following partitions:
  .  (31111)    (511)   .  (61)  .  .  (7)
     (22111)    (421)      (52)
     (211111)   (4111)     (43)
     (1111111)  (331)
                (322)
                (3211)
                (2221)
		

Crossrefs

Row sums are A000041.
The rank statistic for this triangle is A363489.
The version for low mean is A363945, rank statistic A363943.
The version for high mean is A363946, rank statistic A363944.
Column k = 1 is A363947 (A026905 tripled).
A008284 counts partitions by length, A058398 by mean.
A026905 redoubled counts partitions with high mean 2, ranks A363950.
A051293 counts subsets with integer mean, median A000975.
A067538 counts partitions with integer mean, strict A102627, ranks A316413.
More triangles: A124943, A124944, A363952, A363953.

Programs

  • Mathematica
    Table[If[n==k==0,1,Length[Select[IntegerPartitions[n], Round[Mean[#]]==k&]]],{n,0,15},{k,0,n}]
Showing 1-10 of 12 results. Next