A363950
Numbers whose prime indices have rounded-up mean 2.
Original entry on oeis.org
3, 6, 9, 10, 12, 18, 20, 24, 27, 28, 30, 36, 40, 48, 54, 56, 60, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 264, 270, 280, 288, 300, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448
Offset: 1
The terms together with their prime indices begin:
3: {2}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
For mean 1 we have
A000079 except 1.
Partitions of this type are counted by
A026905 redoubled.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Ceiling[Mean[prix[#]]]==2&]
A363745
Number of integer partitions of n whose rounded-down mean is 2.
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0
The a(2) = 1 through a(10) = 16 partitions:
(2) . (22) (32) (222) (322) (332) (3222) (3322)
(31) (41) (321) (331) (422) (3321) (3331)
(411) (421) (431) (4221) (4222)
(511) (521) (4311) (4321)
(611) (5211) (4411)
(2222) (6111) (5221)
(3221) (5311)
(3311) (6211)
(4211) (7111)
(5111) (22222)
(32221)
(33211)
(42211)
(43111)
(52111)
(61111)
These partitions have ranks
A363954.
Cf.
A000041,
A002865,
A027336,
A237984,
A241131,
A327472,
A327482,
A363723,
A363943,
A363944,
A363946.
-
Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]
A364157
Numbers whose rounded-down (floor) mean of prime factors (with multiplicity) is 2.
Original entry on oeis.org
2, 4, 6, 8, 12, 16, 18, 24, 32, 36, 40, 48, 54, 64, 72, 80, 96, 108, 120, 128, 144, 160, 162, 192, 216, 224, 240, 256, 288, 320, 324, 360, 384, 432, 448, 480, 486, 512, 576, 640, 648, 672, 720, 768, 800, 864, 896, 960, 972, 1024, 1080, 1152, 1280, 1296, 1344
Offset: 1
The terms together with their prime factors begin:
2 = 2
4 = 2*2
6 = 2*3
8 = 2*2*2
12 = 2*2*3
16 = 2*2*2*2
18 = 2*3*3
24 = 2*2*2*3
32 = 2*2*2*2*2
36 = 2*2*3*3
40 = 2*2*2*5
48 = 2*2*2*2*3
54 = 2*3*3*3
64 = 2*2*2*2*2*2
72 = 2*2*2*3*3
80 = 2*2*2*2*5
96 = 2*2*2*2*2*3
Without multiplicity we appear to have
A007694.
A078175 lists numbers with integer mean of prime factors.
A363895 gives floor of mean of distinct prime factors.
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
Select[Range[100],Floor[Mean[prifacs[#]]]==2&]
Showing 1-3 of 3 results.
Comments